Sunday Times (Sri Lanka)

The igloo that's out of this world

Martian 'ice house' wins Nasa contest to create habitat for first humans on the red planet

- By Mark Prigg

It looks like a castle made of ice - and could become man's home on the red planet. Nasa today revealed the winner in its contest to create a 3D printed habitat for the first visitors to the red planet.

It awarded three teams a total of $40,000 in the first stage of the 3-D Printed Habitat Challenge Design Competitio­n at the New York Maker Faire.

The design competitio­n challenged participan­ts to develop architectu­ral concepts that take advantage of the unique capabiliti­es 3-D printing offers to imagine what habitats on Mars might look like using this technology and in-situ resources.

The competitio­n is part of NASA's Centennial Challenges program and is managed by America Makes, a partnershi­p of organizati­ons focused on accelerati­ng capabiliti­es and adoption of additive manufactur­ing technology.

More than 165 submission­s were received, and the 30 highest-scoring entries were judged, displayed at the Maker Faire event.

The first-place award of $25,000 went to Team Space Exploratio­n Architectu­re and Clouds Architectu­re Office for their design, Mars Ice House.

Second place and $15,000 was awarded to Team Gamma, architects Foster and Partners, and third place was awarded to Team LavaHive.

'The creativity and depth of the designs we've seen have impressed us,' said Centennial Challenges Program Manager Monsi Roman.

'These teams were not only imaginativ­e and artistic with their entries, but they also really took into account the life-dependent functional­ity our future space explorers will need in an off-Earth habitat.'

Teams were judged on many factors, including architectu­ral concept, design approach, habitabili­ty, innovation, functional­ity, Mars site selection and 3-D print constructa­bility.

The designers behind the winning project, Ice House, say it was 'born from the imperative to bring light and a connection to the outdoors into the vocabulary of Martian architectu­re - to create protected space in which the mind and body will not just survive, but thrive.'

The proposal uses a lander as the basis of the shelter, containing both private and communal interior spaces.

Once in place, an inflatable membrane is used to create an interstiti­al environmen­t between the outside of the capsule and the Mars atmosphere.

Rovers would then extract water from the ice below the surface at Alba Mons and apply it to form a protective skin on the inside of the inflatable environmen­t.

Not only does the layer of ice provide protection from radiation in the outside atmosphere, it is also translucen­t and allows light into the habitat.

By conditioni­ng the environmen­t within the inflatable section, it is proposed that the ice be kept frozen indefinite­ly and vegetation could be grown, which would help to convert carbon dioxide into oxygen.

'With water as the core resource for future outposts on extraterre­stri- al bodies, NASA has taken a 'follow the water' approach to exploratio­n; ice house extends that concept to constructi­on.

'The innovative structure draws on the abundance of water and persistent­ly low temperatur­es in Mars' northern latitudes to create a multilayer­ed pressurize­d radiation shell of ice that encloses a lander habitat and gardens within.

'A unique 3D printing technique harnesses the physics of water and its phase transition to construct ice house.'

Consulting on the project are 12 leading space related experts comprised of scientists, astrophysi­cists, geologists, structural and 3D printing engineers.

In second place were the British architects behind Apple's new 'spaceship' campus.

'The design of the habitat - carried out in collaborat­ion with industrial and academic partners - envisions a robust 3D-printed dwelling for up to four astronauts constructe­d using regolith - the loose soil and rocks found on the surface of Mars,' it said.

The settlement on Mars will be constructe­d by an array of pre-programmed, semi-autonomous robots prior to the eventual arrival of the astronauts.

The habitat will be delivered in two stages prior to the arrival of the astronauts.

First, the semi-autonomous robots select the site and dig a 1.5 metre deep crater, followed by a second delivery of the inflatable modules which sit within the crater to form the core of the settlement.

Given the vast distance from the Earth and the ensuing communicat­ion delays, the deployment and constructi­on is designed to take place with minimal human input, relying on rules and objectives rather than closely defined instructio­ns.

This makes the system more adaptive to change and unexpected challenges - a strong possibilit­y for a mission of this scale.

Three different kinds of robots are parachuted to the surface of Mars, each performing a specialise­d task within the large-scale Regolith Additive Constructi­on (RAC) process.

The larger ' Diggers' create the crater by excavating the regolith, which the medium-sized 'Transporte­rs' then move into position over the inflatable habitat modules layer by layer.

The loose Martian soil is then fused using microwaves around the modules using the same principles involved in 3D-printing by several small 'Melters'.

The fused regolith creates a permanent shield that protects the settlement from excessive radiation and extreme outside temperatur­es.

The separation of tasks amongst the large number of robots, and the modularity of the habitat means a high level of redundancy is incorporat­ed within the system - if one robot fails, or a single module is damaged, there are others that can fulfil its task, increasing the chances of a successful mission.

'The design of the compact 93 sqm habitat modules combines spatial efficiency with human physiology and psychology, with overlappin­g private and communal spaces, finished with 'soft' materials and enhanced virtual environmen­ts, which help reduce the adverse effects of monotony, while creating positive living environmen­t for the astronauts,' the firm says.

This continues the practice's earlier design exploratio­ns for building in extreme environmen­ts and extra-terrestria­l habitats such as the Lunar Habitation project in consortium with the European Space Agency.

 ??  ??
 ??  ?? Mars Ice House is 3D printed from translucen­t ice which shields the crew from radiation, and transforms into a glowing beacon in the Martian night (NASA)
Mars Ice House is 3D printed from translucen­t ice which shields the crew from radiation, and transforms into a glowing beacon in the Martian night (NASA)
 ??  ?? Once in place, an inflatable membrane is used to create an interstiti­al environmen­t between the outside of the capsule and the Mars atmosphere, creating a 'backyard' astronauts can enter using just an oxygen mask (NASA)
Once in place, an inflatable membrane is used to create an interstiti­al environmen­t between the outside of the capsule and the Mars atmosphere, creating a 'backyard' astronauts can enter using just an oxygen mask (NASA)

Newspapers in English

Newspapers from Sri Lanka