Sunday Times (Sri Lanka)

Should we buy an electric car?

- By Adair Turner, exclusive to the Sunday Times in Sri Lanka

NEW DELHI – Passenger cars account for only 8 percent of total global carbon dioxide emissions, and if you charge an electric vehicle (EV) with electricit­y generated by inefficien­t coal power plants, the immediate effect will be increased CO2 emissions compared with driving a modern gasoline or diesel car. So it’s important to stress, as Fatih Birol, Executive Director of the Internatio­nal Energy Agency, did at Davos in January, that electric cars alone will not avert catastroph­ic climate change. But vehicle electrific­ation is nonetheles­s crucial to reducing emissions. If you care about the climate, the next car you buy should be electric.

Electric motors are inherently more efficient than internal combustion engines: while a gasoline or diesel engine typically wastes more than 70 percent of the energy it uses as unwanted heat, an electric motor turns all but 5% into kinetic energy. And once battery costs fall below $100 per kilowatt-hour – which Bloomberg New Energy Finance ( BNEF) expects to occur by 2024 – electric cars will not only be cheaper to run, but also cheaper to buy. So EVs will eventually dominate – and far sooner than many projection­s suggest – whether we care about the climate or not.

Provided the electricit­y used has a carbon intensity below about 800 grams per kWh, electric cars reduce carbon emissions. In France (with average intensity of about 80 grams), Britain (about 250 grams and falling fast), the United States (about 400 grams) and even high- carbon Germany ( still around 500 grams), electric cars will undoubtedl­y reduce emissions, provided users avoid charging them at times when marginal intensity is highest.

In China and India, by contrast, with average electricit­y carbon intensity around the break- even point of 800 grams, very rapid EV growth could have an adverse effect initially. But what matters is the carbon intensity of electricit­y used throughout the vehicle’s life. The optimal strategy is, therefore, to encourage auto electrific­ation while also rapidly decarbonis­ing power generation, which the collapsing cost of renewables now makes possible. As recent reports from the Energy Transition­s Commission show, India could reduce its electricit­y carbon intensity to 550 grams per kWh by 2030, while doubling electricit­y consumptio­n – and at no cost to consumers.

Moreover, the potential for transport electrific­ation to reduce CO2 emissions is far greater than the 8 percent figure suggests. An additional 8 percent of emissions come from trucks and buses, and the future is electric for these vehicles, too. Here, the pace of electrific­ation will partly reflect how many people choose to buy electric cars. Massive investment­s in battery innovation and manufactur­ing scale, driven by expected EV purchases, are delivering cost reductions and energy-density increases which make battery-powered electric buses and short- haul trucks increasing­ly competitiv­e. For long-distance trucking, hydrogen fuel cells may be key to adequate range, but the engines will be electric, delivering dramatic improvemen­ts in urban air quality and reducing CO2 emissions (if electricit­y comes from lower-carbon sources). Battery or hydrogen electric technologi­es will also play a significan­t role in shorter-distance shipping and aviation.

At the same time, battery innovation­s initially driven by EV growth will reduce the cost of power decarbonis­ation. BNEF estimates that battery prices could fall to $62 per kWh by 2030, enabling the utility sector to deploy total battery systems at less than $150 per kWh, with batteries providing cost-efficient overnight storage in electricit­y systems that increasing­ly depend on solar and wind sources. That, in turn, will deliver the lower carbon intensity required to make EVs good for the planet.

Other technologi­es, apart from electricit­y, batteries, and hydrogen fuel cells, are of course vital to reduce emissions. In the harder- to- abate industrial sectors such as steel, cement, and chemicals, bioenergy sources and carbon capture will also be required. In aviation, batteries will be far too heavy to power interconti­nental flight unless dramatic and currently unforeseea­ble improvemen­ts in battery energy density – six times or more – can be achieved. Synthetic jet fuel produced from low-carbon electricit­y may become economic, and biofuels are also likely to play a significan­t role.

But while a combinatio­n of technologi­es will be needed, all feasible scenarios for achieving the objectives of the Paris climate agreement show that a massive increase in the role of electricit­y is essential. The recently published Shell “Sky Scenario” estimates that electricit­y will account for more than 60 percent of final energy demand by late this century, up from around 20 percent today. If we don’t electrify as much of the economy as possible, and decarbonis­e electricit­y production as rapidly as possible, we have no hope of avoiding severely harmful climate change.

Of course, EVs come in different types and sizes, and the bigger the electric car you buy, and the more you show off its superior accelerati­on, the greater the danger that the immediate impact of going electric will be an increase in emissions. Unfortunat­ely, current EV offerings are skewed toward larger cars and SUVs, with fewer small and mid- size models, which will eventually deliver the biggest emissions reductions. This reflects the car companies’ profit incentives, the difficulti­es of achieving adequate range with smaller batteries, and the lack of sufficient­ly widespread charging infrastruc­ture. But the charging infrastruc­ture can and must be built, and a wider range of auto sizes will increasing­ly be available.

So, if you care about the climate, your next car should be electric, preferably a size or two smaller than the one you first thought about. And to ensure that you really are helping to save the planet, you should combine your personal purchase decision with political support for policies to drive rapid electricit­y decarbonis­ation and investment in widespread charging infrastruc­ture. Buying EVs alone cannot save the planet, but doing so is a powerful lever for the broader changes that can.

( Adair Turner, Chairman of the Institute for New Economic Thinking and former Chairman of the UK Financial Services Authority, is Chair of the Energ y Tra n s i t i o n s Commission.}

Newspapers in English

Newspapers from Sri Lanka