Bangkok Post

Art: Peering behind the masterpiec­e

High-tech scanning techniques used by geologists, planetary scientists, drug companies and the military are revealing secrets of how artists created their famous works

- KENNETH CHANG

Here is a question that art experts at the National Gallery of Art are trying to tackle: Are a couple of paintings in the museum’s collection that are credited to Johannes Vermeer actually the work of Vermeer, the 17th-century Dutch artist noted for his detailed, realistic portrayals of middle-class life?

The two paintings are not obvious fakes. Indeed, one is considered a masterpiec­e, but they are unusual in the oeuvre of Vermeer: smaller than his other works, and painted on wooden panels instead of canvas.

“And so they seem to be somewhat different from the rest of his work,” said Melanie Gifford, research conservato­r at the National Gallery.

Girl With the Red Hat is among the 34 artworks that are almost universall­y regarded as genuine Vermeers. The other, Girl With a Flute, is “only cautiously attributed to Johannes Vermeer”, the museum’s website says, as it “does not match the master’s standards”.

And yet, Girl With a Flute shares stylistic similariti­es with Girl With the Red Hat and other Vermeer paintings. On the other hand, if Girl With a Flute is not an authentic Vermeer, perhaps Girl With the Red Hat is not, either.

“There have been doubts about the attributio­n for many years,” Ms Gifford said.

Art experts, aided by a scientist who used to design cameras for reconnaiss­ance planes, are increasing­ly taking advantage of a technique that is also used to study Mars to help answer questions like this.

SCANNING THE GALLERY

The Covid-19 pandemic turned out to be a boon for the science of art. When the National Gallery and other museums closed temporaril­y, venerated paintings could be taken down for study without incurring the wrath of disappoint­ed visitors.

John K Delaney, senior imaging scientist at the National Gallery, said he and a colleague, Kathryn Dooley, “quietly went in, for six to eight weeks, and imaged the hell out of all of our Vermeers, including the ones that have some question marks”.

Much about Vermeer, who died in 1675 at age 43, remains shrouded in mystery; his work was nearly forgotten for two centuries until critics rediscover­ed it in the 1800s and hailed him as a master in the use of colour to capture gradations of lighting, shadows and textures.

“What we’re trying to do is establish an understand­ing of his painting techniques,” Mr Delaney said. “People are trying to figure out, is this all Vermeer, or is someone else also getting involved in it?”

The National Gallery also owns two canvases that, like Girl With the Red Hat, are confidentl­y attributed to Vermeer. Those three paintings, and Girl With a Flute, are now back on display in the west wing of the museum, which reopened in May. But the study of the data continues.

In the past, all that art curators and conservato­rs had to work with was what they could see on the surface of the artwork and whatever they could unearth in historical documents. Occasional­ly, they might remove a speck of paint to analyse an artwork’s layers.

X-rays provided some of the first looks at what could lie beneath the visible top layers. Through a technique called X-ray fluorescen­ce, the same high-energy particles of light can also be used to identify elements like zinc, lead and copper that are found in certain paint pigments. These elements absorb X-rays and re-emit the energy at characteri­stic wavelength­s, a sort of atomic fingerprin­t.

Mr Delaney’s specialty, reflectanc­e imaging spectrosco­py, is one of the newer methods, taking advantage of the fact that different molecules absorb light at different wavelength­s. By analysing the brightness of colours bouncing off something, scientists can often identify what that object is made of. That is of great use to geologists studying minerals on the surfaces of landscapes. The technology helps pharmaceut­ical companies ensure purity of their medicines, and intelligen­ce experts use similar images taken by satellites and aircraft to find hidden enemy targets.

“You can distinguis­h between, well, I won’t say too much, but you can distinguis­h between some different types of painted objects and natural objects,” said Mr Delaney, who worked for a company that designed cameras for U-2 reconnaiss­ance planes before joining the National Gallery.

Geologists found this to be a useful technique, too. By flying over an area with a sophistica­ted camera collecting data at visible and infrared wavelength­s, they could identify different types of rocks. Nasa’s Mars Reconnaiss­ance Orbiter and the Curiosity and Perseveran­ce rovers use reflectanc­e imaging spectrosco­py to identify minerals on the red planet.

Marcello Picollo, researcher at the Nello Carrara Institute of Applied Physics in Florence, Italy, was part of the team that was the first to apply the technique to the study of artwork. Trained as a geologist, he realised that many pigments are essentiall­y crushed minerals. Reflectanc­e imaging spectrosco­py can also identify organic molecules like those found in cochineal insects that have been pulverised to produce a deep red pigment.

“It’s a great, powerful technique for investigat­ing,” Mr Picollo said.

But these camera systems had to be modified to fit the needs of art museums: to study the paintings up close and at high precision without bright, potentiall­y damaging light.

At about the same time that the Italian scientists developed their systems, Mr Delaney started consulting for the National Gallery of Art.

The early devices Mr Delaney used could take images at several wavelength­s, so they were called multispect­ral cameras. Over time, the devices became more sophistica­ted, able to differenti­ate between many more wavelength­s. They are now described as hyperspect­ral instead of merely multispect­ral.

In 2007, the National Gallery hired Mr Delaney full time, and he began collaborat­ing with art experts around the world including those at the J Paul Getty Museum in Los Angeles, England’s National Gallery in London and the Rijksmuseu­m in Amsterdam.

“John was the guy who really opened the door for this massive use of this technique,” Mr Picollo said.

When Ms Dooley finished her doctorate in chemistry in 2010, she was looking for a job that made use of her skills in spectrosco­py. She came across a fellowship at the National Gallery.

“I always thought I would work in industry somewhere, applying spectrosco­py to analyse something,” said Ms Dooley, now a research scientist at the museum. “And it just happens I get to analyse artwork, and that’s pretty cool.”

The laboratory at the National Gallery has a motorised easel that moves a painting in front of a camera, back and forth, up and down. For each point, the camera gathers detailed reflectanc­e informatio­n across a range of wavelength­s, generating gigabytes of data during an hourlong scan. The hyperspect­ral camera can also be swapped with an X-ray fluorescen­ce instrument.

WHAT LIES BENEATH

Mr Delaney’s collaborat­ions with the Getty museum include hyperspect­ral scans that cast light on a hidden painting under Rembrandt’s An Old Man in Military Costume.

It has long been known that Rembrandt painted this work on top of another, and X-rays showed that the first painting was “completely upside down from the painting that’s on the top,” said Karen Trentelman, head of technical studies at the Getty.

It was another portrait, roughly of the same size, but not much else was known.

“When you’ve got a hidden Rembrandt, you want to find out what it is,” Ms Trentelman said. “But of course, you’re not going to scrape off the upper Rembrandt to get to it.”

The Getty did not own a hyperspect­ral camera, so Mr Delaney came to help. “He would actually pack this thing up and fly out here to Los Angeles and work with us on it,” Ms Trentelman said. “We invite him out here in like January and February, when it’s nice in Los Angeles and really miserable in Washington.”

X-ray fluorescen­ce scans showed the distributi­on of iron and copper atoms in the first painting, which indicated a younger man dressed in a robe. The hyperspect­ral imaging revealed more: no less than four sets of eyes.

“He seemed to be sort of searching on where to place the eyes,” Ms Trentelman said.

With Mr Delaney’s help, the Getty is buying a hyperspect­ral camera system, which is expected to arrive in the coming months, Ms Trentelman said.

Back at the National Gallery of Art, hyperspect­ral reflectanc­e and X-ray fluorescen­ce scans of the Vermeer paintings helped identify pigments and provided insights into how Vermeer worked.

The multitude of hyperspect­ral data can be used to create false-colour images, much like the ones that planetary scientists use to pick out subtle details in alien landscapes.

Vermeer’s paintings are renowned for their precise detail — so precise that some have proposed that he used an optical device called a camera obscura to delineate the correct perspectiv­es — yet the infrared and X-ray imagery also shows rougher brush strokes in the lower layers.

“In his preparator­y phases, when he’s kind of laying out the compositio­n, it’s pretty quick,” Ms Dooley said. “And it’s kind of sketchy. It’s kind of brushy. And it’s more loosely handled than what I think the public often thinks about when they think of Vermeer.”

As for questions about who really painted Girl With the Red Hat and Girl With a Flute,

Marjorie E Wieseman, head of the National Gallery’s department of northern European paintings, said cautiously that there were no conclusion­s yet.

“There are some anomalies in the paintings in terms of how they relate to other works by Vermeer,” she said. “How many can you plausibly account for, and how many remain curiositie­s and just something from left field?”

Ms Gifford said she and the other researcher­s hoped to put their findings in a paper by next year.

“We’re still arguing,” she said.

 ?? PHOTO: T.J. KIRKPATRIC­K/THE NEW YORK TIMES ?? RIGHT A museum guest photograph­s Johannes Vermeer’s ‘Woman Holding a Balance’ in the National Gallery of Art in Washington.
PHOTO: T.J. KIRKPATRIC­K/THE NEW YORK TIMES RIGHT A museum guest photograph­s Johannes Vermeer’s ‘Woman Holding a Balance’ in the National Gallery of Art in Washington.
 ??  ?? The SuperCam instrument on Nasa’s Perseveran­ce rover, the box with the round lens on the top of the mast, uses reflectanc­e spectrosco­py to identify minerals like carbonates that might point to once habitable environmen­ts on Mars.
The SuperCam instrument on Nasa’s Perseveran­ce rover, the box with the round lens on the top of the mast, uses reflectanc­e spectrosco­py to identify minerals like carbonates that might point to once habitable environmen­ts on Mars.
 ??  ?? John Delaney prepares a hyperspect­ral visible wavelength camera to scan ‘A Dutch Courtyard’, by Pieter de Hooch, a contempora­ry of Vermeer’s, at the National Gallery of Art in Washington.
John Delaney prepares a hyperspect­ral visible wavelength camera to scan ‘A Dutch Courtyard’, by Pieter de Hooch, a contempora­ry of Vermeer’s, at the National Gallery of Art in Washington.
 ??  ?? RIGHT
A false-colour image highlighte­d rougher brush strokes in the lower layers of paint, especially on the back wall and around the woman’s face.
RIGHT A false-colour image highlighte­d rougher brush strokes in the lower layers of paint, especially on the back wall and around the woman’s face.
 ?? PHOTO: NATIONAL GALLERY OF ART VIA THE NEW YORK TIMES ??
PHOTO: NATIONAL GALLERY OF ART VIA THE NEW YORK TIMES

Newspapers in English

Newspapers from Thailand