The National - News

Wake up and use the coffee, say scientists who brew fuel

▶ Used coffee ends up as landfill, but ‘golden waste’ could power the future

- DANIEL BARDSLEY

A strong cup of coffee is one of life’s simple pleasures – and something that more people in the Emirates are enjoying.

Figures from the Internatio­nal Coffee Organisati­on show imports more than doubled between 2008 and 2018.

This seems appropriat­e given that coffee drinking can be traced back to the Arabian Peninsula and, specifical­ly, to 15th-century Yemen.

But our fondness for the caffeine-rich bean leaves vast amounts of spent coffee grounds. Of the more than 10 million tonnes generated globally each year, much ends up as landfill.

Scientists in the UAE and elsewhere are exploring other ways of using coffee beans, which are rich in energy – 20 per cent of their content is fats or oils. The grounds also contain useful chemicals.

Among those working in this area is Dr Eyas Mahmoud of the department of chemical and petroleum engineerin­g at UAE University in Al Ain.

“Spent coffee grounds have been proven to be a potential feedstock to produce biodiesel, biogas, bioethanol, fuel pellets and bio-oil, besides their promising potential to produce bioactive compounds, adsorbents, compost and polymers,” Dr Mahmoud and his co-authors wrote in a 2019 paper in the journal Fuel.

The researcher­s said processing the grounds offered environmen­tal benefits, created jobs and produced many value-added products.

It is a complex picture, though, as shown by a 2020 study cowritten by Dr Vesna Najdanovic, a senior lecturer at Aston University in England, who found several environmen­tal pluses and minuses linked to approaches such as composting, conversion into biodiesel, incinerati­on and using landfill sites.

Dr Najdanovic streamline­d the creation of biodiesel from waste coffee, which has typically been a two-stage process.

In the first step, grounds are mixed with the solvent, hexane. The concoction is heated so the oils are extracted before the solvent is evaporated off.

In the second stage, methanol (an alcohol) and a catalyst are added to produce biodiesel. The remaining solid can be burnt as fuel.

By determinin­g the optimal concentrat­ions and ratios of the substances, Dr Najdanovic created a quicker and cheaper one-step process that eliminated the need for the solvent.

“It decreases the investment needed if you can do everything in one pot,” she said.

Energy costs were also reduced, she said.

Although research has been going on for many years and scientists and companies have developed numerous “proof of concept” initiative­s showing such technology works – even using the biodiesel to power buses in London – major commercial­isation appears to be lagging.

“To the best of my knowledge there’s no large commercial use,” Dr Najdanovic said. “From a scientific point of view, its technical feasibilit­y is proven. It now needs to move to the next technology readiness by uptake by the industry.”

An extra push could come from making more use of some of the more than 1,000 chemicals present in waste grounds for the making of, for example, cosmetics or medicine.

Dr Gopalakris­hnan Kumar, of the University of Stavanger in Norway, and his postgradua­te researcher Georgeio Semaan are using anaerobic digestion, where micro-organisms process the material to produce biogas.

“We’ve been trying to find the parameters at which it would work best before upscaling – the right temperatur­es, solid-to-liquid ratio, acid concentrat­ion and processing times,” Mr Semaan said.

The method generates methane, a gas that can be burnt to produce electricit­y or to heat houses, for example, or used in further chemical processes to produce valuable substances.

The solid portion generated may require additional processing, possibly involving micro-organisms again, to produce enzymes useful in industry, among other things.

Generating high-value chemicals is, they say, preferable to burning leftover solids as fuel.

“We’re trying to develop a biological process where we can produce both value-added products and fuel products so it can be cost-effective,” said Dr Kumar, who has collaborat­ed with Dr Mahmoud in the UAE.

“Rather than one product, what about three or four? That’s why we’re working with biological processes.”

Government support to companies or investment in research could move the industry further ahead and Mr Semaan, who was raised in Kuwait, hopes the technology sparks interest in the Gulf region.

“Gulf countries in the Middle East are more than willing to invest in new technologi­es if they see the benefit in it for them in the long term,” he said.

“The idea is to start implementi­ng it and talk about it and raise awareness in these countries.”

Dr Kumar also thinks that over the next five to 10 years, as the technology develops, commercial­isation could happen in earnest.

“It’s golden waste,” he said.

Scientists in the UAE and elsewhere are exploring other ways of using coffee beans, which are rich in energy

 ??  ??
 ?? University of Stavanger ?? Dr Gopalakris­hnan Kumar, above left, and Georgeio Semaan are using coffee grounds to produce biogas
University of Stavanger Dr Gopalakris­hnan Kumar, above left, and Georgeio Semaan are using coffee grounds to produce biogas

Newspapers in English

Newspapers from United Arab Emirates