The generator matrix
1 0 1 1 1 0 1 1 0 1 1 0 X 1 1 1 1 0 1 X 1 1 1 0 1 1 1 1 1 0 1 X 1 1 1 X 1 X 0 1 X 1
0 1 1 0 1 1 0 1 1 X X+1 1 1 0 X+1 0 X+1 1 X+1 1 X 0 X+1 1 X+1 1 0 0 X+1 1 0 1 X+1 X 0 1 X 1 X 0 0 X
0 0 X 0 0 0 0 0 0 0 X 0 0 X X X X 0 0 0 0 X X X X X X 0 0 X 0 X 0 0 0 X X X X 0 0 0
0 0 0 X 0 0 0 0 0 X 0 0 0 0 X X 0 X X X X X X X X X X X 0 0 X 0 0 0 0 0 0 0 0 0 X X
0 0 0 0 X 0 0 0 0 0 X X X X 0 X X X X X 0 X X X 0 X X X 0 0 0 X X X X X 0 0 0 0 X 0
0 0 0 0 0 X 0 0 X 0 0 X 0 X 0 X 0 X 0 0 0 X X X X 0 0 0 X X X X X X 0 X 0 0 X 0 X X
0 0 0 0 0 0 X 0 X X 0 0 X X 0 0 X 0 X 0 X X X X 0 X 0 X 0 0 0 0 X 0 0 X 0 X X 0 0 X
0 0 0 0 0 0 0 X X 0 X 0 X X X 0 0 X 0 X X X 0 X X 0 0 X 0 0 0 X X 0 X X X 0 X X 0 0
generates a code of length 42 over Z2[X]/(X^2) who´s minimum homogenous weight is 36.
Homogenous weight enumerator: w(x)=1x^0+210x^36+320x^40+311x^44+137x^48+36x^52+6x^56+3x^60
The gray image is a linear code over GF(2) with n=84, k=10 and d=36.
This code was found by Heurico 1.16 in 16.5 seconds.