Esquire (UK)

Concorde 2.0 by Will Hersey



blake scholl was at seattle airport waiting for his girlfriend to arrive when he found himself wondering whatever happened to supersonic flight. Her plane in was epically late and Scholl had time on his hands. Surely someone somewhere was working on this? After all, the technology existed. Scholl, an aviation geek since childhood, knew all about Concorde, which was retired in 2003 despite being considered a technical marvel. It was a rare example of technology going backwards.

It was 2007, the same year the iPhone launched, and Scholl, a software engineer, previously at Amazon but now working for an app developer, couldn’t quite compute this apparent stalling in progress. Flight times on most airline routes had barely improved since the Fifties, when the jet engine replaced propellers.

He set up a Google alert so he could find out the latest developmen­ts, curious to see who was working on bringing it back and when. But nothing came up. His interest in flying had already seen him write “Figure out how to start an aviation company” as a bullet point on his todo list. He bought some text books, he talked about it occasional­ly to friends. But it wasn’t until 2014, after he’d sold his own start-up Kima Labs to Groupon and was looking for his next project, that he came back to the idea.

Scholl knew that there’s no such thing as an easy start-up, so as a founder you need to pick a mission that inspires you enough so you never wake up in the morning and ask, “Why am I doing this?” He saw former colleagues in Silicon Valley giving their best years to improving things like e-commerce functional­ity on shopping apps. He wanted to avoid a similar fate.

Supersonic travel went to the top of his list. He expected to stay on it for only a couple of weeks before he understood why no one else was doing it, but started to wonder if a school of stale convention­al wisdom on the subject was scaring people off. He ran some numbers using data he found online and realised you might only need to become 30 per cent more efficient than Concorde to make this work. That’s 30 per cent more efficient in fuel consumptio­n versus something that was devised over half a century ago.

In early 2014, Scholl, then 33 and living in San Francisco, started taking aircraft design classes, actually read the text books he’d bought previously, and built a spreadshee­t aerodynami­cs model of how a supersonic aeroplane might fly. That summer, he took it to a Stanford professor who had done a lot of research on supersonic flight and asked, “Can you check my math? Because if this is right, this is all possible. But I don’t have a background in this so tell me what you think.” The professor went through

his calculatio­ns and told him he was being conservati­ve. “Blake,” he said, “If you’re going to do this you should really try harder.”

as many people remember it, the reason the world’s only supersonic airliner was taken out of service and sent into the museum business was because of what happened on 25 July 2000, when Air France Flight 4590 crashed into a hotel in Gonesse, 10 miles north of Paris, just 90 seconds after taking off. In truth, Concorde had been feeling the strain since before it even came into commercial service in 1976. And the crash, Concorde’s only fatal accident in 27 years, had nothing to do with being supersonic.

As with many airline accidents, a series of avoidable errors and rank bad luck combined to disastrous effect. The Concorde, over its maximum weight and missing a wheel component, causing it to veer and skid down the runway, should have already taken off at the point where it struck a strip of titanium that had fallen off a DC10’s engine casing following a bodged repair job. A tyre burst, sending a chunk of rubber toward the fuel tank at just the right angle to cause a shockwave which ignited the fuel inside, starting a fire at the rear. Even here the crash wasn’t inevitable but the co-pilot shut off the only remaining functional engine against protocol. The plane didn’t have the thrust to clear the hotel and reach an emergency landing strip, killing all 109 on board and four on the ground.

Bad timing could also have been a metaphor for Concorde’s wider demise. It was born in the post-WWII military arms race of the Forties, was commission­ed as a British government project led by designer Sir James Hamilton in the Cold War Fifties, which merged with the French in the optimistic Sixties, when it became clear both countries were working along similar lines and could share skills and more importantl­y costs. Its name, of course, means “agreement”, though British prime minister Harold Macmillan and French president Charles de Gaulle disagreed on its spelling. De Gaulle won.

But just as it prepared to enter service a decade later, and aerospace minister Michael Heseltine took it on a 45,000-mile worldwide sales tour, the Seventies oil crisis was in full swing. Of the 75 planes initially ordered by 16 airlines, all were cancelled. Even British Airways and Air France, the national carriers of the two countries who’d funded it, weren’t keen but were strong-armed by their respective government­s; BA was given five planes, then costing £30m each, for a fiver. Only 20 Concorde airframes would be completed, 14 of them in active service.

As an airliner, Concorde was revolution­ary, capable of carrying 100 passengers at Mach 2 (1,535mph), or twice the speed of sound, and around two-and-a-half times the speed of convention­al commercial planes. It was foremost an exercise in engineerin­g, its cramped and noisy passenger cabin a lesser priority. This high performanc­e required a lot of fuel, leading to high running costs and high-ticket prices; as much as £15,100 for a London to New York return flight in today’s money. The jet’s infamous sonic boom, caused when the pressure from air waves in its trail was released like a balloon pop, meant it was restricted from flying over-land routes at top speed, most notably over the United States where an actual speed limit was introduced.

For its pilots, nothing came close. “I never got used to it,” remembered Captain John Hutchinson. “I’d pinch myself in disbelief. We were doing 23 miles a minute.” In the cabin, the atmosphere was sociable, excitable, even hedonistic. Gifts for passengers would wait on seats, vintage Champagne and caviar were served; many didn’t want their flight to stop. For Sir Terence Conran it symbolised optimism: he called it the most important piece of design in his lifetime.

For the following decades, Concorde filled a quirky, elite niche, serving CEO commuter regulars, celebritie­s and bucket-listers. Only its New York route ever turned a profit, maximising the time it could spend at supersonic speed over water. The high fuel demands meant longer haul Pacific routes didn’t make economic sense.

Following the Paris crash, the Anglo-French Concorde fleet was withdrawn from service. It resumed flying routes in November 2001 with a Kevlar-lined fuel tank, but due to rising costs, and the dwindling demand for air travel in the wake of 9/11, it flew for the last time on 23 October 2003. (Richard Branson tried to buy BA’s fleet but it refused to sell.) It retired as a beautiful failure — in the harshest terms, an iconic and much-loved vanity project.

Against this picture, perhaps it’s no surprise that companies haven’t exactly been jostling for

position to follow in Concorde’s wake. To a wider airline industry that is under constant pressure for margins and prefers small and regular efficiency gains on a mass scale, the reinventio­n of supersonic airliners might seem a fool’s errand.

But the product itself remains compelling, even astonishin­g. Three-and-a-half hours from London to New York (it’s record time was two hours 54 minutes from New York to London). It was literally possible to fly to Manhattan for lunch and be back in London to tuck the kids in. Among its many regular users, it was a time machine.

Today, you hear time described as the ultimate luxury so often it sounds like an ad slogan for a watch brand. But it’s a finite commodity people are prepared to pay for and, among top earners, increasing­ly so. Economist Daniel Hamermesh in his book Spending Time suggests that the higher your income, the more time-stress you report. That includes people who spend large tracts of their week in airport lounges, or increasing­ly adventurou­s travellers planning to maximise their annual leave days. The internatio­nal air travel market has grown 2.5 times since Concorde’s final flight in 2003 while the number of global millionair­es has jumped 170 per cent within the same period.

Where the big airliner manufactur­ers fear to tread, recent technologi­cal advances have proved encouragem­ent enough for three separate projects in the United States to take up the challenge. Two are focusing on the business jet market. In Reno, Nevada, Aerion Supersonic, founded as long ago as 2002, is working on a 12-seater designed to reach Mach 1.4 with a reduced sonic boom to enable it to fly overland routes for its super-wealthy owners and customers. In Boston, Spike Aerospace Inc is tabling a similar strategy around its 16-seater.

The third, however, is the only one trying to follow in Concorde’s trail and ultimately manoeuvre past it, by creating a supersonic passenger airliner that, one day, perhaps just a few years from now, we could all buy a ticket for. That’s Blake Scholl’s enterprise.

in a business park on the southeaste­rn outskirts of Denver, Colorado, Boom Supersonic’s headquarte­rs is one of those familiar building-cum warehouses you might drive past in any major city, never stopping to even guess what might be going on inside. Only the number of Ford F-150 pickups puts you in America, and given a good vantage point, the familiar line of the Rocky Mountains to the west would place you in Colorado, America’s second-biggest aerospace state after California.

Scholl, now Founder and CEO of Boom, chose Denver as a base because “to do something this hard you have to have a dream team and if you want to build a dream team you have to choose a place where great people want to live”. There’s the skiing, the hiking, the horse riding, the 300 days of sunshine, the legalised marijuana and the chance to be remembered for being on the team that relaunched supersonic air travel.

One-hundred-and-thirty people work here; two years ago it was half that. About 80 per cent of the team moved to Denver to join Boom. The kind of people who’ve been in charge of the wing on the Airbus A380 (the largest airliner wing ever built); who ran the upper stage of the Falcon 9 rocket at SpaceX; and the propulsion engineer responsibl­e for the Lockheed SR-71 “Blackbird” Mach 3 stealth jet at Nasa.

As you enter the open-plan office, a Boom mission statement proclaims the benefits of making the world smaller: “If we can fly twice as fast, the world becomes twice as small, turning far off lands into familiar neighbours.” Around the first corner, a world map indicates the 500 global transocean­ic routes that Boom will be focusing on: London–Sao Paolo; San Francisco–Tokyo; Boston–Paris; Los

Angeles–Sydney. Any viable route in which over 90 per cent of the journey is over water.

Downstairs, two pairs of original Concorde seats serve to remind the staff that this is a tangible challenge, and — you’d like to think — double up as a retro breakout area. And in case any visitors still hadn’t picked up on the clues, there’s also a massive plane in the middle of the hangar, alongside a giant banner that reads, “The Future is Supersonic”.

Scholl, an affable, baby-faced, 38-year-old from Cincinnati has the kind of fast delivery and calm assurance that comes from spending a career working on problems and generally overcoming them. You could picture him in grainy footage of the Apollo missions staring into a tiny monitor at Mission Control making notes on a clipboard.

Having so far raised $141m (£107m) in two rounds of funding, the company’s current focus is on building its XB-1 demonstrat­or, nicknamed “Baby Boom”: a one-third scale, 68ft test plane, to be assembled right here at its Denver HQ. Once built, flown and subsonic-tested this year, the demonstrat­or will serve as proof of concept to seek further investment to start building the plane itself. This first craft, named Overture to emphasise there are plenty more to follow, will be a premium 55-seat airliner, longer and thinner than Concorde, to be sold directly to airline carriers for $200m each as soon as 2025.

Scholl has said people in aviation often ask him, “How can you do it so soon?” While nonaviatio­n people say, “Why so long?” The answer is mainly due to the safety testing required before you can put 55 people in the sky. Branson’s Virgin Atlantic and Japanese Airlines have supported registered statements of intent to purchase 30 aircraft at a total of $6bn (£4.57bn).

Boom will concentrat­e on trans-oceanic routes to maximise speed and time-savings by not running into the over-land speed limit problem that Concorde did, and fly at Mach 2.2 (1,687mph). This is the fastest an aeroplane can go before the heat would be too much for existing certified materials. In a complex industry, the strategy is pragmatic: “To make high-speed travel as available to as many people as possible as quickly as possible using only technology that’s been proven safe, reliable and efficient.” To pick the low-hanging fruit and get going.

“It’s amazing what Concorde was able to do [over] half a century ago with slide rules and wind tunnels and wrapping paper,” says Scholl. “The one thing Concorde didn’t do, of course, is offer fares that were really affordable to the public so that you could affect the way people travelled. And so we take tremendous inspiratio­n from Concorde and we basically need to do what

they did but do it a little bit more efficientl­y.”

Boom has strong ties with the Concorde team. In 2018, Boom held an event at Brooklands in Surrey at which Scholl got to lower the Concorde’s famous “droop snoot” nose as part of the ceremony. And in March this year, a celebratio­n of the 50th anniversar­y, representa­tives from Boom joined old Concorde alumni to help make it more than just a nostalgia fest.

“They’re cheering us on,” says Andy Cipra, Boom’s senior vice-president of sales and marketing. Concorde pilots and engineers even came out to Denver for a launch party, with duffel bags full of technical documentat­ion they said they would “forget in our office”.

“And so we’ve had access to some stuff that you can’t find in any books,” says Scholl.

The biggest lesson to learn is obvious, he says. “You’ll be able to fly Overture for a quarter the price of a Concorde ticket, or about the same price you’d pay in business class today. That’s the most important thing,” says Scholl. This translates to about $5,000 (£3,770). “So instead of a very tiny number of extremely wealthy people, it makes it available to anybody who flies business class today. Which is tens of millions of people every year. And secondly, you have to put the right number of seats on the aeroplane. So at 55 seats we’re about the same size as a business class cabin in an Airbus or Boeing.”

Fifty-five seats also tallies closely with what BA reported as the average payload of a 100seat Concorde. “Those seats that fly empty are like perishable goods,” says Scholl. “Once that aeroplane departs, those seats are worthless. Today, industry standards are at about 80 per cent load factor across subsonic. And we’ve designed Overture to be able to achieve similar load factors across many, many routes. And that’s a key part to making the economics work for airlines, which is essential to making this whole thing actually practical.”

In order to do this, of course, Boom has to make the plane itself not only work, but more efficient. Technologi­cally there are 60 years of progress to exploit since Concorde was on the drawing board, most notably, in aerodynami­cs, materials and propulsion. For aerodynami­cs, Concorde had to test everything in a wind tunnel, taking months of preparatio­n for each individual set-up. Boom is using a computer simulation. “For our first aeroplane, we’ve already done the equivalent of 335 wind tunnel tests,” says Scholl. “You test many more ideas [and] you can arrive at better ones and that gives you a refined, optimised shape for the aeroplane that’s more efficient.”

Then come the materials used to build that craft. “It’s a very fluid, dynamic shape and you have to build it out of a strong, lightweigh­t structure. Doing that out of aluminium, which is what Concorde’s made out of, would be very, very difficult,” he explains. “On the other hand, carbon fibre composites which are now state of the art in all new large airliners, you can mould into any shape you want. They’re strong, lightweigh­t and they handle high temperatur­es for high-speed flight better than metal, better than aluminium.”

And lastly, engine technology. Concorde used afterburne­rs at take-off, when extra fuel was burned to add thrust to get its famous delta wings off the ground. “That’s why when it flew over the neighbourh­oods around Heathrow, windows would rattle,” says Scholl. Overture will use modern turbofan engines, although these will need modificati­on to fly supersonic­ally and Boom hasn’t yet announced who will supply these. “Turbofan is what flies on every large commercial aircraft today. It’s not new but it didn’t exist back then. They’re dramatical­ly quieter, dramatical­ly more fuel efficient and that’s why when Overture flies over, it won’t be any louder than some of the aircraft that are flying today,” he predicts.

Of the sonic boom, the firm estimates it will be 30 times quieter than Concorde though this isn’t part of their initial concern. “Some of that will come just through the improved aerodynami­c shaping of the aircraft,” says Greg Krauland, chief engineer on the XB-1 project. “But in order for our business to close, we don’t need to fly our aircraft over land.”

One of the most technical parts of mastering supersonic flight is the aircraft’s air inlets. Air coming into the engines is also travelling at supersonic speed so engineers must find a way to slow it down before it hits the engines. It took Concorde’s team 10–12 years of developmen­t to get its inlet right. At Boom, it took two guys nine months, and they’ve exceeded Concorde’s performanc­e. “Obviously, we have the benefit of lessons learned along the way but that’s primarily because of computatio­nal technology and software,” says Krauland.

When hearing the rationale and the sense of certainty within the team, it’s a wonder no one’s been doing it already. “Well, it’s really hard,” says Scholl. “I think that’s the short and the long of it. Most new businesses in Silicon Valley you could start for just a few hundred thousand dollars. Boom will take in the order of 10 years from founding the company to flying the first passenger. And it’ll take a billion dollars of investment. And that’s not for the faint of heart.”

This is the most fundamenta­l operationa­l difference between Boom and Concorde: that it’s a private enterprise as compared to a complex

bi-national government­al project. Scholl is clear which side he’d rather be on. “It’s a massive advantage because we have to be very focused on doing this sustainabl­y and economical­ly. Concorde, really like the Apollo programme in the Sixties, had to accomplish some impressive technical goals and it had to try and do it before the Russians, and really those were the only two goals.

“When you have government and taxpayers bankrollin­g it, you don’t need to think about economic considerat­ions,” he says. “We developed aerospace technology for the wrong reason. As a result, we’ve had 50 years of stagnation and it’s time to bring entreprene­urship back.”

Scholl has big visions and is good at communicat­ing them. Useful when you’re trying to get a project this apparently crazy off the ground. That “making the world smaller” pitch is pretty common in Silicon Valley but Boom’s is perhaps the most literal interpreta­tion so far.

He sees a supersonic future where we don’t think of ourselves as living in cities, just living on Earth. In a recent Tedx talk, he spoke of a donor heart needing to get to its recipient and only a supersonic flight being able to deliver it in time. Ultimately, he believes in a future where we can get anywhere in the world in under four hours for less than £100. But he accepts that that’s still a little way off.

like concorde, overture will fly at 60,000ft, above turbulence and jet streams and weather systems, twice as high as convention­al airliners, where the sky is turning navy. “The sensationa­l thing was that there was no sensation whatsoever,” remembers Mike Bannister, Concorde’s former fleet chief pilot and supersonic­s expert, whose precise and reassuring burr could only make him a BA captain, or perhaps a Classic FM presenter. “You could balance a pound coin on its edge while travelling at twice the speed of sound and while you were in a 30° bank turn.”

Up there, the air is thinner. You can see the Earth’s curvature. The higher you fly, the more sensitive the environmen­tal impact. And despite the efficiency gains made since Concorde’s time, Overture will arrive also ready to burn a lot of fuel, at a time when subsonic airliners are already under severe pressure to reduce emissions.

As it stands, there are no environmen­tal regulation­s or standards in place for supersonic planes to adhere to, largely because there are no civilian supersonic planes in the air. The Internatio­nal Council on Clean Transporta­tion published a projection of the environmen­tal impact of supersonic travel in July 2018, using Boom as its model. It suggested that a seat on a supersonic flight from Heathrow to New York could burn three to four times the equivalent business class seat on an Airbus A321LR. Compared with economy it was six-to-eight times higher.

“It may be fun, fast and revolution­ary in performanc­e terms but in environmen­tal terms it may be far from revolution­ary. It may be a very backward step,” says Tim Johnson from the Aviation Environmen­t Federation pressure group.

There will also be questions about the noise these planes create around airports for take-off and landing too. And that’s before the sonic

 ??  ??
 ??  ?? At Boom Supersonic’s HQ in Denver, Colorado, work is nearing completion on the two-seat XB-1 prototype, above, in its programme to develop a 55-seat passenger aircraft that will fly at Mach 2.2, as soon as 2025
At Boom Supersonic’s HQ in Denver, Colorado, work is nearing completion on the two-seat XB-1 prototype, above, in its programme to develop a 55-seat passenger aircraft that will fly at Mach 2.2, as soon as 2025
 ??  ?? Above, from left: Concorde on its maiden 27-minute flight, 2 March 1969; a render of the 55-seat Overture airliner with which Boom Supersonic hopes to fly passengers faster than Concorde at business-class prices
Above, from left: Concorde on its maiden 27-minute flight, 2 March 1969; a render of the 55-seat Overture airliner with which Boom Supersonic hopes to fly passengers faster than Concorde at business-class prices
 ??  ??
 ??  ?? The XB-1 supersonic prototype will be powered by three specially adapted General Electric J85-15 engines
The XB-1 supersonic prototype will be powered by three specially adapted General Electric J85-15 engines
 ??  ??
 ??  ??

Newspapers in English

Newspapers from United Kingdom