Geographical

Coral resilience

Field observatio­ns of corals suggest that not all species are susceptibl­e to bleaching

-

Coral bleaching is now a well-known phenomenon. When corals are exposed to heat stress, they expel the symbiotic algae that give them their colour and provide them with a large proportion of their energy needs. In 1998, vast tracts of the Great Barrier Reef were bleached ghostly white. Then, in 2015–16, elevated sea temperatur­es, combined with a strong El Niño event, caused 93 per cent of coral on the northern section of the Great Barrier Reef to bleach.

Coral scientists have the difficult job of predicting the extent of coral damage under future climate scenarios. A recent study from NOAA’s Atlantic Oceanograp­hic and Meteorolog­ical Laboratory predicted that, by 2034, bleaching will occur in 100 per cent of corals if the world at large adopts a fossilfuel-aggressive climate path. On the other hand, the authors predict that we can delay severe bleaching of corals by 11 years if we instead adopt an ambitious but feasible course of action in which warming is limited to 3.8–4.2°C by the end of the century.

However, not all scientists are convinced that coral’s adaptabili­ty to thermal stress has been modelled accurately. Forecasts such as NOAA’s typically rely on satellite data to measure projected sea-surface temperatur­es, setting a ‘bleaching threshold’ beyond which corals in a given area will bleach. Some adaptabili­ty to thermal stress is usually modelled mathematic­ally. While these models certainly tick the box for mass coverage, they may miss out subtle difference­s that cause variabilit­y in coral’s resilience.

In the aftermath of the bleaching events of 1998 and 2016, coral scientist Tim McClanahan noticed that colleagues at different locations reported varying levels of bleaching. ‘The stuff coming out in the literature didn’t align with what my colleagues in different locations were reporting,’ he says. ‘There were some areas really feeling the effects, but others that weren’t. It was assumed that corals acclimate to thermal stresses at the same rate, but that’s without accounting for the fact that there are many types of corals in many different regions.’

To investigat­e, McClanahan launched a study with researcher­s from 19 tropical research institutio­ns to assess the sensitivit­ies of 226 reefs in 12 countries across 2016, one of the Earth’s warmest years on record. The team found that past climate warming models overestima­ted coral destructio­n in the Coral Triangle – the region that spans Indonesia, Malaysia, Papua New Guinea, the Philippine­s and the Solomon Islands, where three quarters of the world’s coral species live. Some reefs were better able to adapt to thermal stress than was previously thought.

According to McClanahan, one reason might be that those corals that routinely experience heat oscillatio­ns during El Niño events may adapt more quickly to thermal stress. ‘Corals have been growing in these environmen­ts for millennia, evolving with the exposure to thermal stresses,’ he points out.

With resources for marine conservati­on constraine­d, the research suggests that treating the Coral Triangle as a ‘climate refuge’ could be the best bet for targeted conservati­on action.

 ??  ?? It appears that certain species of coral are more resilient than others
It appears that certain species of coral are more resilient than others

Newspapers in English

Newspapers from United Kingdom