How It Works

Powerful ocean currents snap Antarctic iceberg in two

- WORDS JENNIFER NALEWICKI

Aswift change in ocean currents in the Southern Ocean likely snapped one of the largest icebergs in half like a twig. The gigantic ice mass, called A-68a, was known as a tabular iceberg due to its rectangula­r shape. At its largest it was roughly the size of Delaware, covering approximat­ely 2,300 square miles, and in 2017 it famously calved off another iceberg, A-68, dumping 1 trillion tonnes of meltwater into the ocean over the three years it was seabound. But scientists didn’t know what caused A-68a to break apart.

In a recent study, researcher­s used satellite imagery and datasets to travel back in time to December 2020, when the finger-shaped iceberg experience­d two breakdown events. After passing by South Georgia Island,

A-68a began fracturing, with a large chunk breaking off as a direct result of the iceberg’s keel dragging on the seafloor. However, the second event befuddled experts since the iceberg was floating in the deep open ocean. “Usually, icebergs break because they run into the seafloor, causing parts of it to

break off,” said Alex Huth, a postdoctor­al research associate in the program in Atmospheri­c and Oceanic Sciences (AOS) at Princeton University. “But in this case, after looking at the ocean current data, the finger-like portion of the iceberg seemed to be overlappin­g one part of the current that was stronger than another part, so it seems reasonable to suspect that it caused enough tension along the iceberg’s body to snap it in half like a toothpick.”

The researcher­s theorised that the second breakdown event was triggered by oceancurre­nt shear and that a change in currents led to part of the iceberg being lopped off – something that hadn’t been reported before. To test their theory, they looked at how outside forces such as ocean currents and wind could impact the iceberg. Creating a simulation of A-86a using a model called Kinematic Iceberg Dynamics (IKID), the team found that “when [an iceberg] becomes positioned into a current that’s very strong versus another current that’s very weak, the bonds between [conglomera­te] particles will snap, and we were able to model the actual fracture of the berg.”

The iceberg’s finger-like shape may have also contribute­d to the fracture, Huth said, “since it made the berg long enough to overlap the two currents”. Researcher­s also examined whether or not preexistin­g cracks encouraged the breakup. However, Huth said that remains inconclusi­ve since “the main part of the fracture doesn’t seem to follow along a preexistin­g crack”.

By studying the demise of A-68a, Huth and his team believe they can get a better sense of the role icebergs play on Earth’s system and how they interact with outside forces. “Icebergs represent roughly 50 per cent of the ice mass loss of Antarctica, which happens when they calve off ice sheets,” Huth said. “As they drift away, they deposit meltwater far away from the sheets. This can influence ocean circulatio­n by stratifyin­g the water column and can essentiall­y fertilise the ocean with iron since they’re a source of sediment from Antarctica, which can lead to an increase in phytoplank­ton.”

 ?? ??

Newspapers in English

Newspapers from United Kingdom