BBC Sky at Night Magazine

An InSight inside MARS

NASA plans to launch its next mission to Mars this month. Elizabeth Pearson looks at what InSight hopes to uncover deep beneath the Martian surface

-

Dozens of robotic explorers have been sent to Mars over the decades, but so far most of them have done little more than scratch at the surface. NASA’s next mission to the Red Planet, however, will look much deeper into the planet than any of its predecesso­rs. The InSight (Interior Exploratio­n using Seismic Investigat­ions, Geodesy and Heat Transport) lander is preparing to hunker down on the Martian surface, ready to take the planet’s pulse and temperatur­e, and peel back its layers to expose its very core.

The mission is due to launch in early May from Vandenberg Air Force Base, California, arriving at Mars six months later, to send a static lander to the surface on 26 November. However, as this is in the middle of the Martian autumn, when dust

storms can sweep across the entire planet, the descent could be a fraught one. Luckily, this isn’t the first time NASA has put down a probe like InSight.

“We tried to stick to the design of a previous lander, Phoenix, as much as possible,” says Suzanne Smrekar, Deputy Principal Investigat­or of InSight. “First, we have an aeroshell that will slow us down when we hit the atmosphere. Then we have a parachute to take us most of the way through the atmosphere. Finally, for the last little bit we come down on rockets.”

Once it has safely endured this landing and is on the surface, InSight will spend the next 10 weeks setting itself up. Its first task will be unfolding its solar arrays so that it can supply power to the lander. Then the mission will look around for the best place to put its fingers to the ground, so that it can feel for marsquakes – tremors created by the shifting of internal rocks, which radiate out from deep within the planet.

“Our primary instrument is a seismomete­r, the Seismic Experiment for Interior Structure (SEIS),” says Smrekar. “It actually has several short and long period seismomete­rs to measure nearby seismic waves and those that come from deeper within the planet respective­ly. We have three of each so we can tell the direction and orientatio­n that they are coming from.”

Measuring marsquakes

These seismomete­rs are so sensitive that they have to be covered over with a dome that will protect them from tiny shakes caused by wind or thermal expansion to make them as precise as possible. Such

“RISE is tracking the wobble of Mars as it spins on its axis since planets with liquid cores wobble more” Suzanne Smrekar, NASA

accuracy is vital in marsquake measuremen­ts to detect the tiny changes that occur when a seismic wave travels between the different layers inside the planet – going from the viscous fluid of the mantle to the solid crust, for instance. By looking for these tiny variations, planetary geologists will be able to work out the thickness and density of each layer, building a map of the world beneath the Martian surface. Gathering this knowledge is the first step to understand­ing how Mars grew and evolved into the planet we see today.

“We’re trying to understand what happens immediatel­y after the planets came together. The heat of that kinetic energy caused the bodies to melt and then relatively rapidly, within 10 million years, they began to form their initial layers as light stuff floated to the top and heavy stuff sank to the bottom forming the core, mantle and crust: a process called differenti­ation,” says Smrekar.

Stunted growth

The extent to which a planet differenti­ates is mostly defined by how much heat it has and how hot a planet is mostly depends on its size. Small rocky bodies, like the Moon, rapidly cool after they form and so never fully differenti­ate their interior. Meanwhile Earth has kept evolving for billions of years because it’s been kept warm by the decay of radioactiv­e elements. As its interior is molten, the material there can redistribu­te itself inside the planet. The liquid layers also allow the continenta­l plates to move around, changing the topography of the surface, while liquid magma bubbles up from volcanoes and covers what was there before. The end result is that Earth today bears little resemblanc­e to the planet it was when it first formed billions of years ago. The same processes are thought to play out on the other, larger terrestria­l worlds, but Mars has some unique geological qualities.

“Mars is in this sweet spot: we think it’s in the right place in terms of its size that it never had plate tectonics, so it still has its initial crust, but it’s big

enough that it has some of the same kinds of layers that we expect inside of the Earth,” says Smrekar.

Although Mars started out developing like a larger rocky planet, it cooled and froze very early in its lifetime, halting its growth. As the planet hasn’t changed in billions of years, it now gives geologists a window into the early years of planetary formation. And the key to understand­ing why Mars cooled while worlds like Earth didn’t is finding out how the Red Planet lost its heat. To do this, InSight will deploy its second instrument, the Heat Flow and Physical Properties Probe (HP3).

“Most of the planet’s current heat budget comes from the decay of radioactiv­e elements: uranium, thorium, potassium. HP3 will help us extrapolat­e how much of those elements Mars had in the past, and how much energy there was to drive things like volcanoes on the surface of Mars, and what the surface temperatur­e might have been,” says Smrekar.

Running on the spot

To take these measuremen­ts, HP3 will use a heavy probe to hammer itself up to 5m into the ground, pulling a string of temperatur­e sensors behind it that will measure the heat flowing out of the planet. Once everything is in place, the lander will cease all further movement so as not to disturb the two experiment­s. Fortunatel­y, the fact that the lander

is static doesn’t matter – no matter where it comes to rest, it can measure heat flow and keep track of seismic signals. The immobility also benefits InSight’s third and final main experiment: RISE.

“The Rotation and Interior Structure Experiment (RISE) are radios that will communicat­e with Earth every couple of days over Mars’s year, tracking the placement of the lander very precisely,” says Smrekar. “What we’re really doing with them is tracking the wobble of Mars as it spins on its axis, since planets with liquid cores wobble more than planets with solid cores.”

By measuring the wobble, planetary geologists will be able to determine more accurately the density and consistenc­y of each layer, which will help them work out what elements might make up the planet’s core. By tracking back, the InSight researcher­s will be able to piece together the geological processes that went into creating the rocky world that Mars is today, and so how planets such as Earth might have looked before they were transforme­d by billions of years of volcanism and geological developmen­t.

InSight is expected to have finished its initial science goals within one Martian year (which at 687 days is just shy of two Earth years) but the team has built the lander to last, and hopefully InSight will continue gathering data long after its initial run. It might even be able to detect the arrival of two fellow Mars explorers when they land: both NASA and ESA plan on sending rovers to the Red Planet in 2020, doubling the number of mobile observator­ies ranging across the planet’s surface. But for the next two years, InSight will take advantage of the quiet, and sit waiting for Mars to shake out its hidden secrets.

 ??  ?? InSight unfolds its solar arrays for a final test on 23 January 2018 in the Lockheed Martin clean room in Colorado
InSight unfolds its solar arrays for a final test on 23 January 2018 in the Lockheed Martin clean room in Colorado
 ??  ?? Layers separate
A NASA artist’s impression of how a rocky planet, such as Mars, is formed through processes known as accretion and differenti­ation
Layers separate A NASA artist’s impression of how a rocky planet, such as Mars, is formed through processes known as accretion and differenti­ation
 ??  ?? Heat builds up
Heat builds up
 ??  ?? Elements melt
Elements melt
 ??  ?? Material accretes
Material accretes
 ??  ?? InSight will measure seismic activity both near the surface and deep inside the core of Mars using the Seismic Experiment for Interior Structure (SEIS)
InSight will measure seismic activity both near the surface and deep inside the core of Mars using the Seismic Experiment for Interior Structure (SEIS)
 ??  ?? The landing sites of all the successful Mars missions so far, plus the proposed equatorial landing site for InSight
The landing sites of all the successful Mars missions so far, plus the proposed equatorial landing site for InSight
 ??  ?? InSight will use thrusters to complete a descent flight plan identical to that of the Phoenix mission before it
InSight will use thrusters to complete a descent flight plan identical to that of the Phoenix mission before it
 ??  ?? InSight will arrive on Mars packed with all the equipment it needs to reveal the secrets at the core of the rocky planet ABOUT THE WRITER Dr Elizabeth Pearson is the news editor at BBC Sky at Night
Magazine and she holds a PhD in extragalac­tic astronomy
InSight will arrive on Mars packed with all the equipment it needs to reveal the secrets at the core of the rocky planet ABOUT THE WRITER Dr Elizabeth Pearson is the news editor at BBC Sky at Night Magazine and she holds a PhD in extragalac­tic astronomy
 ??  ?? Above right: The tip of the InSight drill, which the project’s team has dubbed ‘the mole’
Above right: The tip of the InSight drill, which the project’s team has dubbed ‘the mole’
 ??  ?? Above left: HP3 was originally designed to be part of the ExoMars mission until a redefiniti­on of its aims resulted in the cancellati­on of all its geophysica­l experiment­s
Above left: HP3 was originally designed to be part of the ExoMars mission until a redefiniti­on of its aims resulted in the cancellati­on of all its geophysica­l experiment­s

Newspapers in English

Newspapers from United Kingdom