BBC Sky at Night Magazine

Cutting edge

After 40 years, scientists are re-evaluating how they date the ages of planetary surfaces

-

“We have better images of the lunar surface for crater counting, and more precise isotopic measuremen­ts of the Moon rocks”

When planetary scientists are trying to understand the surfaces of other worlds in our Solar System, and the processes that form and shape them, the ages of different features is a crucial detail.

It’s straightfo­rward to deduce the relative chronology of different plains of volcanic rocks or sedimentar­y deposits by looking to see which one appears to lie on top of or cut across the other. But this only tells you that one splodge of rock is older or younger than its neighbouri­ng formations. What would be so much more useful to know is the absolute age of particular surfaces – for example, this volcanic plain is 200 million years old, but that one erupted only 60 million years ago.

On Earth, one of the main methods we use to date the formation of geological strata is to measure the amounts of different radioactiv­e isotopes the rock contains. Unfortunat­ely, when it comes to our exploratio­n of other planets, this sort of measuremen­t is currently impossible for the instrument­s aboard lander probes such as the Curiosity rover on Mars.

Luckily, planetary scientists do have a simple trick up their sleeve. In general, the older a planetary surface is, the more impacts it will have been exposed to. Craters accumulate over time like raindrops on a paving slab during a light drizzle, and so finding relative ages becomes a process of crater- counting. But in order to calculate a much more useful estimate of the absolute age of a surface, you also need to know the rate that impacts of different sizes occur through the Solar System. And this is why the Apollo Moon missions were so valuable.

Testing the formula

The Apollo crews collected rock samples from known locations on the lunar surface and brought them back to labs on Earth so that the radioactiv­e isotopes could be measured. Planetary scientists could then match up these radiometri­c ages with crater- counts of the same surface, and so derive a formula that allows us (with some adjustment­s) to calculate the absolute age of surfaces throughout the Solar System. Huge amounts of current planetary science is based on these Apollo samples from 50 years ago, and the dating formula published in 1983. But we now have better images of the lunar surface for crater counting, and more precise isotopic measuremen­ts of the recovered rocks. And so Wajiha Iqbal and her colleagues from the University of Münster thought it was time for a reassessme­nt of these calculatio­ns. Iqbal has spent her PhD using ultra high-resolution Lunar Reconnaiss­ance Orbiter images to generate geological maps of the Apollo 11 landing site and to count craters. She correlated these with recent measuremen­ts of radiometri­c ages for Apollo rock samples, and compared her updated chronology formula with that of 1983. And the answer? Absolutely no change. The 1983 chronology formula was bang-on. Which, far from being an anti-climax, is wonderful. It means nothing needs to be recalibrat­ed from almost 40 years of planetary research, but we only have this scientific confidence if establishe­d results are double-checked. If we never confirmed what we thought we already knew, we’d not spot curious anomalies that could hint at some new science lurking unseen below the surface.

Lewis Dartnell was reading… Geological Mapping and Chronology of Lunar Landing Sites: Apollo 11 by Wajiha Iqbal. Read it online at https://arxiv.org/abs/2003.03292

 ??  ?? Scientists have re- examined the craters at the Apollo 11 landing site, combined with rock collected there (inset), to check a planetary dating formula from 1983
Scientists have re- examined the craters at the Apollo 11 landing site, combined with rock collected there (inset), to check a planetary dating formula from 1983
 ??  ?? Prof Lewis Dartnell is an astrobiolo­gist at the University of Westminste­r
Prof Lewis Dartnell is an astrobiolo­gist at the University of Westminste­r

Newspapers in English

Newspapers from United Kingdom