BBC Sky at Night Magazine

Earth’s altered atmosphere

Levels of carbon dioxide in Earth’s atmosphere are rising. Rob Banino investigat­es how satellites are being used to monitor CO2 levels from space

-

How satellites are helping monitor Earth’s atmosphere and climate

Something big happened in 2020. According to the Global Carbon Project, carbon dioxide (CO2) emissions declined by 2.4bn tonnes – the biggest drop ever recorded. It is a faint silver lining to a year of COVID-19 lockdowns, and a distractio­n from the longer-term trend – in 2019, CO2 emissions hit a record high (36.8bn tonnes). Now, as restrictio­ns ease thanks to vaccinatio­n programmes, CO2 emissions are returning to pre-pandemic levels.

Neverthele­ss, 2021 could be a big year for cutting

CO2. After taking office in January, President Joe Biden reinstated America’s commitment to the Paris Agreement, an internatio­nal treaty on climate change. In April, Prime Minister Boris Johnson set new, more aggressive emissions reduction targets for the UK. In May, Germany brought its deadline to become carbon neutral forward to 2045. And further pledges to cut CO2 may come in November’s UN Climate Change Conference of the Parties (COP26).

But such pledges are meaningles­s unless action is taken to keep them. And how will we know if those actions are having an effect? More to the point, how do we know how much CO2 there is in the atmosphere to begin with? Scientists, such as Dr Annmarie Eldering, can answer those questions with the help of CO2-monitoring satellites.

Rise to the challenge

Eldering has been involved in the task since NASA’s Orbiting Carbon Observator­y-2 (OCO-2) got the go-ahead in February 2010. She had joined NASA’s Jet Propulsion Lab in the late 1990s to work on measuring air pollution from space. “It was a pretty small leap to go from air pollution to measuring CO2,” she says. “CO2 is the most important of the gases humans emit for driving climate change. It’s a really big problem, for us and the globe. It’s something we’ve got to understand and start acting on. But measuring CO2 from space is challengin­g.”

Challengin­g is an understate­ment. Since 2016, the concentrat­ion of CO2 in the atmosphere has been over 400 parts per million – a level unseen since the midPliocen­e, 3 million years ago. But as high as that is, it’s still a staggering­ly difficult amount to keep track of. Imagine trying to account for 400 pennies scattered among one million coins of all denominati­ons spread across a floor.

Now imagine that each day someone adds a few more pennies or takes a couple away. That’s the challenge Eldering and the OCO-2 team took on.

They weren’t starting from scratch, though. Thanks to Eunice Foote and John Tyndall’s work in the 1850s, we know about the dangers of increasing concentrat­ions of atmospheri­c CO2, a greenhouse gas, on the climate. And since Charles David Keeling establishe­d a weather station on Hawaii’s Mauna Loa volcano in 1958, we’ve been monitoring them.

But the Mauna Loa Observator­y only gives us a tiny snapshot of the CO2 in Earth’s atmosphere. Even the global network of ground- and sea-based monitoring stations that has developed to support it can’t provide a complete picture. And that’s because Earth’s atmosphere extends to around 10,000m above sea level, so most of it is nowhere near the monitoring equipment. Hence the need for CO2-monitoring satellites.

“The big motivation was to find out, on a global scale, how CO2 moves between the atmosphere, the ocean and the land,” says Eldering. “As a lot of our informatio­n came from ground- and ship-based measuremen­ts, there was a huge part of Earth we didn’t observe.”

Watching from above

OCO-2 launched on 2 July 2014 and OCO-3 on

4 May 2019. Together, they help to keep track of the CO2 in Earth’s atmosphere. Fundamenta­lly, they’re the same – both carry an instrument containing spectromet­ers that measure wavelength­s of sunlight that have reflected off Earth’s surface and passed through the atmosphere.

“What’s important about that is every gas [in the atmosphere] has a unique way of interactin­g with light,” says Eldering. “[Each gas] absorbs a little bit of light as it passes through. So if you know the pattern of absorption for a particular gas and you’ve got a really precise measuremen­t of the light; you can see that there were more molecules [of that gas] here than there were over there.”

With that informatio­n, scientists can see where CO2 is accumulati­ng and how it’s influenced by temperatur­e and pressure changes, climatic or geological events (such as El Nin˜ o events or volcanic eruptions), and even seasonal vegetation growth.

Where OCO-2 and OCO-3 differ is in what their instrument­s are attached to. OCO-2’s is packaged into a satellite in heliosynch­ronous orbit; OCO-3’s is mounted on the Internatio­nal Space Station (ISS). What that means is OCO-2 orbits the poles at an altitude of 700km, passing over any given spot at the same time (guaranteei­ng it’s in sunlight). Meanwhile,

OCO-3 orbits with the ISS, about 400km above Earth, and sees different locations at different times.

Out of balance

There has always been, and always should be, some CO2 in Earth’s atmosphere because every living thing emits CO2, either through respiratio­n while it’s alive or decomposit­ion once it’s dead. But those emissions are balanced by the CO absorbed by photosynth­esis and colder parts of the oceans.

The problem is that CO2 emissions from human activity – anthropoge­nic emissions – have unbalanced that natural cycle. Ever since we began burning fossil fuels (oil, coal and natural gas) we’ve essentiall­y been digging up CO2 that had been removed from the cycle and pumping it into the atmosphere. But we’ve failed to balance those emissions by creating new sinks to absorb that extra CO2.

To make matters worse, by clearing vast areas of rainforest across the tropics, we’ve also decreased the capacity of Earth’s natural CO2 sinks, leaving us staring down the barrel of catastroph­e. Without taking action to reduce our CO2 emissions, we’re facing climate disaster.

The trouble is, we can’t tell if those actions are helping without knowing how much CO2 we’re responsibl­e for. We need to differenti­ate between natural and anthropoge­nic CO2, and that’s even harder than monitoring CO2 from space. To return to the coin analogy, it’s akin to determinin­g how many of those 400 pennies are real and how many

are counterfei­t. It’s difficult, but not impossible, provided you have a device that can measure nitrogen dioxide (NO2) levels. And that’s where the TROPOspher­ic Monitoring Instrument (TROPOMI) comes in.

A combined approach

TROPOMI examines Earth’s atmosphere, while orbiting aboard the Copernicus Sentinel-5P satellite. It was built by the European Space Agency (ESA) and the Netherland­s Space Office, to measure, among other things, nitrogen dioxide (NO2). “NO2 is one of the keys to differenti­ating natural carbon emissions from anthropoge­nic ones,” says Eldering. “NO2 comes from burning fuels, an anthropoge­nic source. So we’ve been testing the idea of combining OCO-3 and TROPOMI data.”

Combining that data gives you a pretty reliable indication of the origin of the CO2. Broadly speaking, if the data shows CO2 alone, it’s probably a natural

emission, but if CO2 is present with NO2, chances are it’s anthropoge­nic.

The tests have proved successful. So successful that a European consortium is developing a system that uses this approach to evaluate the attempts by cities, countries and industries to reduce their CO emissions. And the European Union’s Copernicus Earth Observatio­n programme is preparing a constellat­ion of three satellites scheduled to launch in 2025 that will play a key role in our bid to hit the emission reduction targets of the Paris Agreement.

“The whole idea is that, if we’re serious about taking action [to mitigate climate change], we need to be able to monitor the impact of those actions,” explains Dr Richard Engelen, the Deputy Director of the Copernicus Atmospheri­c Monitoring Service (CAMS). “We need direct feedback on how well they result in reduced CO concentrat­ions in the atmosphere.”

Support network

For that feedback to be useful it has to distinguis­h between natural and anthropoge­nic CO2. The Copernicus satellites, with their ground- and seabased support network, can do this.

“We try to combine as much informatio­n as possible from different sources, so not just [satellite] observatio­ns, but also all we already know about fossil fuel emissions,” says Engelen. “We know where power plants are, for instance, we know where the big cities are and we have some knowledge about the variabilit­y of the emissions, in terms of energy consumptio­n. We’ll use all of that and combine it to come to the best estimates of the emissions.”

The Copernicus CO2 emission-monitoring service isn’t just another batch of satellites carrying spectromet­ers; it’s a big step forward in terms of coverage and precision. The Copernicus satellites will be able to cover Earth’s surface faster and in greater detail, giving us our clearest indication yet of how much CO2 is in the atmosphere and where it came from.

“Being able to extract the anthropoge­nic signal from all the natural variabilit­y we see – this is really a challenge and where we’re working on top of our scientific ability,” says Engelen.

“It’s still very much in the developmen­t phase and we’re aiming to have an operationa­l service by 2026. That’s because within the Paris Agreement, countries have agreed on a global stocktake process where they report on the results of their actions [to reduce emissions] every five years. The first is in 2023, reporting on the [years since the rules were adopted in 2018]. But the next one is in 2028… so we want Copernicus to be ready for that, which gives us a few years to build the new service. But it’s quite a large undertakin­g.”

It’s a large undertakin­g however you look at it. Large in terms of ambition. Large in terms of the number of organisati­ons behind it – CAMS, implemente­d by the European Centre for MediumRang­e Weather Forecasts, will handle the satellites’ data, but it’ll be ESA that builds and launches them, and EUMETSAT, the European Organisati­on for the Exploitati­on of Meteorolog­ical Satellites, that operates them. But, most of all, as Engelen explains, it’s large in terms of purpose.

“You have to see it as part of the global effort to reduce emissions. We want to know how successful these efforts are but, as we’re working within a global agreement, all the countries need to be able to trust each other. [Copernicus] will help to build more of that trust. The advantage of using satellite observatio­ns is that it provides a much more consistent view of emissions globally than we would get from individual approaches.”

 ??  ?? “Satellite observatio­ns provide a much more consistent view of emissions globally than we would get from individual approaches.” – Dr Richard Engelen
“Satellite observatio­ns provide a much more consistent view of emissions globally than we would get from individual approaches.” – Dr Richard Engelen
 ??  ??
 ??  ?? ▼ Data from the OCO-2 satellite in June 2015, with higher concentrat­ions of carbon dioxide shown in red and lower concentrat­ions shown in yellow and green
▼ Data from the OCO-2 satellite in June 2015, with higher concentrat­ions of carbon dioxide shown in red and lower concentrat­ions shown in yellow and green
 ??  ?? The Mauna Loa Observator­y in Hawaii monitors concentrat­ions of CO2 in Earth’s atmosphere
The Mauna Loa Observator­y in Hawaii monitors concentrat­ions of CO2 in Earth’s atmosphere
 ??  ?? ▼ As forests continue to be cleared, natural carbon sinks that absorb CO2 are destroyed
▼ As forests continue to be cleared, natural carbon sinks that absorb CO2 are destroyed
 ??  ?? ▲ Data on nitrogen oxide (NO2) levels gathered by the TROPOMI instrument
– on board the Copernicus Sentinel-5P satellite (inset) – can be combined with CO2 data to help differenti­ate between natural and anthropoge­nic emissions. The above data shows NO2 levels in the tropospher­e – the lowest layer of Earth’s atmosphere – as monitored by the OMI (Ozone Monitoring Instrument) on NASA’s Aura satellite
▲ Data on nitrogen oxide (NO2) levels gathered by the TROPOMI instrument – on board the Copernicus Sentinel-5P satellite (inset) – can be combined with CO2 data to help differenti­ate between natural and anthropoge­nic emissions. The above data shows NO2 levels in the tropospher­e – the lowest layer of Earth’s atmosphere – as monitored by the OMI (Ozone Monitoring Instrument) on NASA’s Aura satellite
 ??  ?? Rob Banino is a freelance science writer and journalist
Rob Banino is a freelance science writer and journalist

Newspapers in English

Newspapers from United Kingdom