BBC Sky at Night Magazine

Cutting edge

Scientists think they’ve found the origin of the meteor that killed the dinosaurs

- Lewis Dartnell was reading… Dark Primitive Asteroids Account for a Large Share of K/Pg-Scale Impacts on the Earth by David Nesvorny et al. Read it online at: https://arxiv.org/abs/2107.03458

For many years now, it’s been well establishe­d that the mass extinction at the end of the Cretaceous period – which led to the extinction of the dinosaurs as well as the loss of 75 per cent of all plant and animal species on Earth – was associated with a huge impact. The Chicxulub crater, buried beneath the Yucatán Peninsula in Mexico, was identified in 1990 as a giant impact feature – some 150km across and 20km deep (although by now well filled-in with sediments). The calculated formation of this crater coincides with the mass extinction, around 66 million years ago, and the impactor is believed to have been an asteroid about 10–15km in diameter.

The Chicxulub crater is one of the largest impact structures ever found on Earth. But there’s something else exceptiona­l about this impact. It seems that the crater was created by a carbonaceo­us chondrite (CC) asteroid – a dark rock full of organic compounds. This is surprising because impacts from this sort of object are rare – they make up only five per cent of all meteorites collected. So why is it that one of the largest craters on Earth – and the impact that wiped out the dinosaurs – was formed by such an asteroid?

Measuring impacts

David Nesvorný and his colleagues at the Department of Space Studies, Southwest Research Institute, in the US, have been trying to get to the bottom of this mystery. They built a computer simulation of how the orbits of objects in the main asteroid belt can be dislodged to become near-Earth asteroids that have the potential to collide with our planet. Their model included over 42,000 asteroids with widths greater than 5km in the main belt, and how they’re affected by influences such as the radiation pressure of sunlight or Jupiter’s gravity.

They calculated that Venus and Earth receive about the same number of strikes from asteroids bigger than 5km, with Mars being hit about three times less. Interestin­gly, Nesvorný found that about six per cent of the simulated Venus impactors had evolved into a retrograde orbit beforehand – equivalent to cars colliding head-on with a much higher impact speed – and hit the planet at a staggering 220,000km/h.

But what about the compositio­n of the largest impactors, such as the Chicxulub asteroid? Nesvorný and his colleagues found that because of the orbital dynamics involved, smaller impactors (less than a kilometre in diameter) are most likely to have come from the inner edge of the asteroid belt, so have an ordinary, stony compositio­n – as found with most meteorites discovered. But the largest impactors hitting Earth are more likely to have originated from the middle or outer asteroid belt, where CC objects are more common. They conclude that the impactor that triggered the mass extinction 66 million years ago was a main-belt asteroid that quite likely (they calculate around 60 per cent probabilit­y) originated from beyond 2.5 AU.

“The Chicxulub crater is one of the largest impact structures ever found on Earth. But there’s something else exceptiona­l about this impact”

 ??  ?? An illustrati­on of the Chicxulub impact crater shortly after its formation, off the coast of present-day Mexico
An illustrati­on of the Chicxulub impact crater shortly after its formation, off the coast of present-day Mexico
 ??  ?? Prof Lewis Dartnell is an astrobiolo­gist at the University of Westminste­r
Prof Lewis Dartnell is an astrobiolo­gist at the University of Westminste­r

Newspapers in English

Newspapers from United Kingdom