The Daily Telegraph

‘It’s awesome to move again after eight years’

Quadripleg­ic is first in world to move his hands and arms using technology that links to his thoughts

- By Sarah Knapton SCIENCE EDITOR

PARALYSED people could regain control of their own limbs, scientists have proved, after connecting a man’s thoughts to his arm muscles, allowing him to feed himself for the first time in eight years.

Bill Kochevar, 56, who was left paralysed from the neck down following a cycling accident, is now able to drink coffee, eat macaroni cheese, and mashed potato, and even scratch his nose with a loofah after being fitted with the groundbrea­king technology.

The device works by sending Mr Kochevar’s brainwaves to a computer, where they are translated into electrical pulses and directed to electrodes implanted near the paralysed muscles in his arm and hand. As the muscles switch on, they allow him to grasp objects and raise his arm.

He is the first person with quadripleg­ia in the world to have arm and hand movements restored using a direct link to the brain. “For somebody who’s been injured eight years and couldn’t move, being able to move just that little bit is awesome to me,” said Mr Kochevar, of Cleveland, Ohio.

“It’s better than I thought it would be. I’m making it move without having to really concentrat­e hard at it. I just think ‘out’ and it goes.”

The device was developed by scientists from Case Western Reserve University, who are based at the Cleveland Functional Electrical Stimulatio­n (FES) Center in Ohio.

Mr Kochevar became paralysed in 2009 on a 150-mile charity bike race when a postal van he was riding behind stopped suddenly to deliver a package, and he went into the back. For the past eight years he has relied on carers to help him with every task, but now he has the first hope of independen­ce. A team of surgeons implanted two electrode arrays, each around the size of a small aspirin, on the surface of Mr Kochevar’s brain to record signals when he imagines moving his arm and hand.

That signal is fed into a computer that turns the command into an electrical pulse, triggering 36 electrodes in his hand, wrist, arm, elbow and shoulder.

To overcome gravity that would otherwise prevent him raising his arm, he has a mobile arm support, which is under his brain’s control.

After 45 weeks of training, Mr Kochevar can now move each joint in his right arm independen­tly just by thinking.

“By taking the brain signals generated when Bill attempts to move, and using them to control the stimulatio­n of his arm and hand, he was able to perform personal functions that were important to him,” said Dr Bolu Ajiboye, assistant professor of biomedical engineerin­g and lead study author.

“Although similar systems have been used before, none of them have been as easy to adopt for day-to-day use and they have not been able to restore both reaching and grasping actions. With further developmen­t, we believe the technology could give more accurate control, allowing a wider range of actions, which could begin to transform the lives of people living with paralysis.”

When asked, people with quadripleg­ia say their first priority is to scratch an itch, feed themselves or perform other simple functions with their arm and hand, instead of relying on caregivers.

“Every day, most of us take for granted that when we move, we can move any part of our body with precision and control in multiple directions, and those with traumatic spinal cord injury or any other form of paralysis cannot,” said Dr Benjamin Walter, associate professor of neurology at Case Western. “The ultimate hope of any of these individual­s is to restore this function.”

He added: “By restoring the communicat­ion of the will to move from the brain directly to the body, this work will hopefully begin to restore the hope of millions of paralysed individual­s that some day they will be able to move freely again.”

The devices could soon be available outside the lab. Work is under way to make the brain implant wireless, and the scientists are improving decoding and stimulatio­n patterns needed to make movements more precise.

“This is a major step toward restoring some independen­ce,” said Dr Bob Kirsch, chair of Case Western Reserve’s department of biomedical engineerin­g.

“He’s really breaking ground for the spinal cord injury community.”

The research was published in The Lancet.

‘This work will hopefully begin to restore the hope of millions that some day they will be able to move freely’

 ??  ?? Bill Kochevar can eat macaroni cheese on his own again eight years after the crash that left him paralysed
Bill Kochevar can eat macaroni cheese on his own again eight years after the crash that left him paralysed
 ??  ??

Newspapers in English

Newspapers from United Kingdom