The Scotsman

Scientists’ find could block memory loss in Alzheimer’s

●Hopes of breakthrou­gh in treatment through developmen­t of new drugs

- By KEVAN CHRISTIE Health Correspond­ent

Scientists may have discovered a way to block Alzheimer’s from causing memory loss in a developmen­t that could spell the end for families watching their loved one’s condition deteriorat­e.

The medical breakthrou­gh, which so far has only worked in mice, involves removing a protein called Ephexin5 which prevents animals from developing the characteri­stic memory loss and improves thinking.

In the report, published online in The Journal of Clinical Investigat­ion, the researcher­s say the findings could eventually advance developmen­t of drugs that target Ephexin5 to prevent or treat symptoms of the disorder in humans.

Gabrielle Sell, a graduate student at Johns Hopkins University School of Medicine, said: “Ephexin5 is a tantalisin­g pharmaceut­ical target because in otherwise healthy adults, there’s very little present in the brain.

“That means shutting off Ephexin5 should carry very few side effects.”

Their work with Ephexin5 grew

from Alzheimer’s disease’s defining features, the developmen­t of thick plaques in the brain composed of a protein called amyloid beta.

Stemming the production of this protein is currently the major focus of efforts to develop new Alzheimer’s treatments, but it is not the amount of amyloid beta in patients’ brains that correlates best with the severity of symptoms; rather, it is the loss of socalled synapses, a type of cellular structure forged between two brain cells.

Neuroscien­tist Dr Margolis discovered that when they added amyloid beta to healthy mouse brain cells growing in petri dishes, these cells began overproduc­ing Ephexin5.

Additional­ly, when they injected the brains of healthy mice with amyloid beta, cells there also began overproduc­ing Ephexin5 – both clues that the protein that makes Alzheimer’s characteri­stic plaques appears to trigger an increase in brain cells’ production of Ephexin5.

When the researcher­s examined preserved brain tissues isolated from Alzheimer’s patients during autopsies, they also found similarly high levels of Ephexin5.

Armed with what they called this wealth of evidence that brain cells produce too much Ephexin5 when Alzheimer’s disease linked to amyloid beta is present, the researcher­s then investigat­ed whether reducing Ephexin5 might prevent Alzheimer’s deficits.

Using genetic engineerin­g techniques that knocked out the gene that makes Ephexin5, the researcher­s developed mouse Alzheimer’s disease models whose brain cells could not produce the protein.

Although the animals still developed the characteri­stic Alzheimer’s amyloid plaques, they did not lose their memory.

Dr Rosa Sancho, head of research at Alzheimer’s Research UK, said: “The loss of connection­s between nerve cells is a key feature of Alzheimer’s, and one that is being increasing­ly recognised by those searching for potential new medicines for the disease.

“This study has revealed a new player controllin­g nerve cell communicat­ion that could be contributi­ng to Alzheimer’s. These are important early steps along the road to new treatments for Alzheimer’s, and future studies will need to explore whether it is possible to safely reduce the levels of Ephexin5.”

Newspapers in English

Newspapers from United Kingdom