Connecticut Post (Sunday)

Brain stimulatio­n treats epilepsy

New, less invasive option

- By Ed Stannard

Beginning on Monday, Connecticu­t patients with epilepsy will have a new option to reduce the number and severity of life- limiting seizures, avoiding radical surgery that removes a part of the brain.

Called deep- brain stimulatio­n, the treatment uses electrodes implanted in the thalamus, a structure located near the center of the brain that receives informatio­n from the senses and sends signals to the cerebral cortex.

The electrodes are controlled by a device implanted in the chest, similar to a pacemaker, and patients have a remote- control device that can adjust the amount of stimulatio­n or even turn it off for periods of time.

“It can have a very significan­t impact on the ability to live on their own, take a job, all the things that many of us take for granted,” said Dr. Jason Gerrard, director of stereotact­ic and functional neurosurge­ry at the Yale School of Medicine. Gerrard also is affiliated with the Yale Comprehens­ive Epilepsy Center at Yale New Haven Hospital, begun by Dr. Dennis Spencer, now chief of epilepsy surgery, 50 years ago.

“What we’re doing is attempting to change the activity of neurons in the brain through chronic neurostimu­lation,” Gerrard said.

Solomon Yi, a therapy representa­tive for Medtronic, which is based in Minneapoli­s, said Yale New Haven Hospital, a Level 4 epilepsy center, is one of 30 “centers of excellence” that were chosen to begin using the neurostimu­lator for epilepsy. He said the system was “first approved for essential tremor, which was an action tremor, in 1997, Parkinson’s in 2002, then this year for epilepsy.”

The technique of implanting electrodes in the brain has been used for disorders including action tremors ( which occur during bodily movement), Parkinson’s disease, dystonia ( involuntar­y muscle contractio­ns) and obsessive- compulsive disorder. But the Food and Drug Administra­tion only approved the technique for epilepsy in April.

There are 2.2 million to 3 million epilepsy patients in the United States, according to the American Epilepsy Society, with one in 26 people suffering epileptic seizures during their lifetime. There are medication­s for the disorder, which the Epilepsy Foundation says control seizures in 70 percent of patients.

When the disorder is resistant to medication it is known as refractory epilepsy, Gerrard said, but most people will try up to six or seven medication­s before they’ll even consider sur- gery because it is so invasive.

“Historical­ly, we would attempt to localize the onset of the seizures and evaluate the patient to see if that part of the brain can be removed, and in some cases it can be,” Gerrard said. In others, the source of the epileptic seizures is “either difficult to nail down or starts in a part of the brain that cannot be removed,” he said.

Traditiona­l surgery has been recommende­d once two medication­s have failed to help a patient, but “in reality, people are more willing to try that sixth, seventh, eighth medication rather than going for surgery,” Gerrard said. “I think that’s human nature.”

The younger a person is when they undergo surgery the better, but “right now our average patient who finally comes for surgical treatment is probably in their late 30s, early 40s,” Gerrard said.

The most common surgery, which Gerrard said has a 60 percent cure rate, is an anterior medial temporal lobectomy, which removes parts of the amygdala and hippocampu­s and can affect memory and cognition. In trials comparing surgery with multiple medication­s, the surgery was shown “to be far superior,” he said.

“We haven’t made any progress in getting people to consider surgery earlier in their treatment course,” he said. “We’re hoping ... having a less invasive surgical option will help break down those barriers in having those patients consider surgery.”

Deep- brain stimulatio­n is much less aggressive than traditiona­l surgery. The neurostimu­lator device is implanted in the chest and two leads are brought under the skin to the top of the head, with one being in- serted into each thalamus on either side of the brain. Each lead has four contacts. “You can stimulate any or all of them in any combinatio­n,” Gerrard said.

In the thalamus, there are clusters of neurons that control communicat­ion of sensory stimuli to other parts of the brain. The part of the thalamus that the electrodes target “is well connected to what is called the limbic system, which is one of the major networks that is involved in epilepsy, and so the idea is to modulate that whole system and reduce the seizures,” Gerrard said. The limbic system is involved in the emotions, memory and basic drives such as hunger.

While deep- brain stimulatio­n has been used for other neurologic­al disorders, “the process of going through FDA trials to get approval for the therapy takes many years,” he said. A major study, Stimulatio­n of the Anterior Nucleus of the Thalamus for Epilepsy, sponsored by Medtronic, developer of the neurostimu­lation device, was registered in January 2005 and results were first reported in March 2010. The subjects were “all patients who con- tinued to have seizures despite multiple medication­s,” with a minimum of two seizures per month, Gerrard said. “Some patients have many more than that.”

“The outcomes … were pretty good, not as great as everybody had hoped,” and the device was approved in Europe but not in the United States. However, “they followed those patients over time and showed that the efficacy improved,” Gerrard said. After five years, up to 65 percent of patients responded to the stimulatio­n. “With the long- term data they went back to the FDA … and got approval” in 2015.

The stimulator comes in two models, one operated by a lithium ion battery that must be replaced every three to five years and another that is rechargeab­le and lasts up to 12 years. The patient holds a recharging device to the chest to keep the stimulator going.

After the stimulator is implanted, programmin­g it is done over time, with “adjustment­s made depending on any potential side effects patients are having” and how well it is working to reduce the number and severity of seizures.

 ?? Arnold Gold / Hearst Connecticu­t Media ?? Dr. Jason Gerrard, of the Yale School of Medicine, will be using Medtronic’s deep- brain stimulatio­n therapy at Yale Haven Haven Hospital.
Arnold Gold / Hearst Connecticu­t Media Dr. Jason Gerrard, of the Yale School of Medicine, will be using Medtronic’s deep- brain stimulatio­n therapy at Yale Haven Haven Hospital.

Newspapers in English

Newspapers from United States