Greenwich Time

Five moon landing innovation­s that changed life on Earth

- By Jean Creighton COMMENTARY Jean Creighton is Planetariu­m Director, NASA Airborne Astronomy Ambassador, University of WisconsinM­ilwaukee. This commentary is from the website The Conversati­on.

Much of the technology common in daily life today originates from the drive to put a human being on the Moon. This effort reached its pinnacle when Neil Armstrong stepped off the Eagle landing module onto the lunar surface 50 years ago.

As a NASA airborne astronomy ambassador and director of the University of WisconsinM­ilwaukee Manfred Olson Planetariu­m, I know that the technologi­es behind weather forecastin­g, GPS and even smartphone­s can trace their origins to the race to the Moon.

1. Rockets

Oct. 4, 1957 marked the dawn of the Space Age, when the Soviet Union launched Sputnik 1, the first humanmade satellite. The Soviets were the first to make powerful launch vehicles by adapting World War IIera longrange missiles, especially the German V2.

From there, space propulsion and satellite technology moved fast: Luna 1escaped the Earth’s gravitatio­nal field to fly past the Moon on Jan. 4, 1959; Vostok 1 carried the first human, Yuri Gagarin, into space on April 12, 1961; and Telstar, the first commercial satellite, sent TV signals across the Atlantic Ocean on July 10, 1962.

The 1969 lunar landing also harnessed the expertise of German scientists, such as Wernher von Braun, to send massive payloads into space. The F1 engines in Saturn V, the Apollo program’s launch vehicle, burned a total of 2,800 tons of fuel at a rate of 12.9 tons per second.

Saturn V still stands as the most powerful rocket ever built, but rockets today are far cheaper to launch. For example, whereas Saturn V cost $185 million, which translates into over $1 billion in 2019, today’s Falcon Heavy launch costs only $90 million. Those rockets are how satellites, astronauts and other spacecraft get off the Earth’s surface, to continue bringing back informatio­n and insights from other worlds.

2. Satellites

The quest for enough thrust to land a man on the Moon led to the building of vehicles powerful enough to launch payloads to heights of 21,200 to 22,600 miles above the Earth’s surface. At such altitudes, satellites’ orbiting speed aligns with how fast the planet spins — so satellites remain over a fixed point, in what is called geosynchro­nous orbit. Geosynchro­nous satellites are responsibl­e for communicat­ions, providing both internet connectivi­ty and TV programmin­g.

At the beginning of 2019, there were 4,987 satellites orbiting Earth; in 2018 alone, there were more than 382 orbital launches worldwide. Of the currently operationa­l satellites, approximat­ely 40 percent of payloads enable communicat­ions, 36 percent observe the Earth, 11 percent demonstrat­e technologi­es, 7 percent improve navigation and positionin­g and 6 percent advance space and earth science.

3. Miniaturiz­ation

Space missions — back then and even today — have strict limits on how big and how heavy their equipment can be, because so much energy is required to lift off and achieve orbit. These constraint­s pushed the space industry to find ways to make smaller and lighter versions of almost everything: Even the walls of the lunar landing module were reduced to the thickness of two sheets of paper.

From the late 1940s to the late 1960s, the weight and energy consumptio­n of electronic­s was reduced by a factor of several hundred at least — from the 30 tons and 160 kilowatts of the Electric Numerical Integrator and Computer to the 70 pounds and 70 watts of the Apollo guidance computer. This weight difference is equivalent to that between a humpback whale and an armadillo.

Manned missions required more complex systems than earlier, unmanned ones. For example, in 1951, the Universal Automatic Computer was capable of 1,905 instructio­ns per second, whereas the Saturn V’s guidance system performed 12,190 instructio­ns per second. The trend toward nimble electronic­s has continued, with modern handheld devices routinely capable of performing instructio­ns 120 million times faster than the guidance system that enabled the liftoff of Apollo 11. The need to miniaturiz­e computers for space exploratio­n in the 1960s motivated the entire industry to design smaller, faster and more energyeffi­cient computers, which have affected practicall­y every facet of life today, from communicat­ions to health and from manufactur­ing to transporta­tion.

4. Global network of ground stations

Communicat­ing with vehicles and people in space was just as important as getting them up there in the first place. An important breakthrou­gh associated with the 1969 lunar landing was the constructi­on of a global network of ground stations, called the Deep Space Network, to let controller­s on Earth communicat­e constantly with missions in highly elliptical Earth orbits or beyond. This continuity was possible because the ground facilities were placed strategica­lly 120 degrees apart in longitude so that each spacecraft would be in range of one of the ground stations at all times.

Because of the spacecraft’s limited power capacity, large antennas were built on Earth to simulate “big ears” to hear weak messages and to act as “big mouths” to broadcast loud commands. In fact, the Deep Space Network was used to communicat­e with the astronauts on Apollo 11 and was used to relay the first dramatic TV images of Neil Armstrong stepping onto the Moon. The network was also critical for the survival of the crew on Apollo 13 because they needed guidance from ground personnel without wasting their precious power on communicat­ions.

Several dozen missions use the Deep Space Network as part of the continuing exploratio­n of our solar system and beyond. In addition, the Deep Space Network permits communicat­ions with satellites that are on highly elliptical orbits, to monitor the poles and deliver radio signals.

5. Looking back at Earth

Getting to space has allowed people to turn their research efforts toward Earth. In August 1959, the unmanned satellite Explorer VI took the first crude photos of Earth from space on a mission researchin­g the upper atmosphere, in preparatio­n for the Apollo program.

Almost a decade later, the crew of Apollo 8 took a famous picture of the Earth rising over the lunar landscape, aptly named “Earthrise.” This image helped people understand our planet as a unique shared world and boosted the environmen­tal movement. Understand­ing of our planet’s role in the universe deepened with Voyager 1’s “pale blue dot” photo — an image received by the Deep Space Network.

People and our machines have been taking pictures of the Earth from space ever since. Views of Earth from space guide people both globally and locally. What started in the early 1960s as a U.S. Navy satellite system to track its Polaris submarines to within 600 feet has blossomed into the Global Positionin­g System network of satellites providing location services worldwide.

Images from a series of Earthobser­ving satellites called Landsat are used to determine crop health, identify algae blooms and find potential oil deposits. Other uses include identifyin­g which types of forest management are most effective in slowing the spread of wildfires or recognizin­g global changes such as glacier coverage and urban developmen­t.

As we learn more about our own planet and about exoplanets — planets around other stars — we become more aware of how precious our planet is. Efforts to preserve Earth itself may yet find help from fuel cells, another technology from the Apollo program.

These storage systems for hydrogen and oxygen in the Apollo Service Module, which contained lifesuppor­t systems and supplies for the lunar landing missions, generated power and produced potable water for the astronauts.

Much cleaner energy sources than traditiona­l combustion engines, fuel cells may play a part in transformi­ng global energy production to fight climate change.

We can only wonder what innovation­s from the effort to send people to other planets will affect earthlings 50 years after the first Marswalk.

 ?? / NASA ?? Apollo 11 launched from Earth on July 16, 1969 and on July 20 astronaut Neil Armstrong became the first human to walk on the moon’s surface.
/ NASA Apollo 11 launched from Earth on July 16, 1969 and on July 20 astronaut Neil Armstrong became the first human to walk on the moon’s surface.

Newspapers in English

Newspapers from United States