Houston Chronicle

Texas Tech researcher on black hole team

Internatio­nal effort studies Cygnus X-1, raising more questions about the first of these cosmic mysteries ever discovered

-

New observatio­ns of the first black hole ever detected have led astronomer­s to question what they know about the universe’s most mysterious objects.

Published this month in the journal Science, research shows the system known as Cygnus X-1 contains the most massive stellarmas­s black hole ever detected without the use of gravitatio­nal waves.

This research highlights how much there is to still learn, says study co-author Tom Maccarone, the Presidenti­al Research Excellence Professor in Texas Tech University’s Department of Physics & Astronomy.

“Cygnus X-1’s was already the most massive stellar-mass black hole that had a reasonably secure mass estimate,” Maccarone said. “This pushes it up even further, into a range close to where most of the merging black holes seen by gravitatio­nal waves have been found. It also has a massive companion star that may also turn into a black hole, although there is a high probabilit­y that the star will merge with the black hole before it becomes a black hole itself.”

Cygnus X-1’s black hole is one of the closest to Earth. It was discovered in 1964 when a pair of Geiger counters were carried on board a sub-orbital rocket launched from New Mexico. The object was the focus of a famous scientific wager between physicists Stephen Hawking and Kip Thorne, with Hawking betting in 1974 that it was not a black hole and conceding that bet in 1990. It also was popularize­d in two songs by the classic rock band Rush in the late 1970s.

An internatio­nal team of astronomer­s used the Very Long Baseline Array — a continent-sized radio telescope made up of 10 dishes spread across the United States — together with a clever technique to measure distances in space.

“If we can view the same object from different locations, we can calculate its distance from us by measuring how far the object appears to move relative to the background,” said lead researcher James Miller-Jones, a professor at Curtin University in Australia and the Internatio­nal Centre for Radio Astronomy Research. “If you hold your finger out in front of your eyes and view it with one eye at a time, you’ll notice your finger appears to jump from one spot to another. It’s exactly the same principle.”

The new study’s co-author, Ilya Mandel, a professor at Australia’s Monash University and the ARC Centre of Excellence in Gravitatio­nal Wave Discovery, said the black hole is so massive it’s actually challengin­g how astronomer­s thought they formed.

“The black hole in the Cygnus X-1 system began life as a star approximat­ely 60 times the mass of the sun and collapsed tens of thousands of years ago. Incredibly, it’s orbiting its companion star — a supergiant — every five and a half days at just one-fifth of the distance between the Earth and the sun. These new observatio­ns tell us the black hole is more than 20 times the mass of our sun — a 50 percent increase on previous estimates.”

Next year, the world’s biggest radio telescope — the Square Kilometre Array— will begin constructi­on in Australia and South Africa, allowing for even greater study than is now possible.

“Studying black holes is like shining a light on the universe’s best kept secret — it’s a challengin­g but exciting area of research,” Miller-Jones said.

“It’s a great time to be an astronomer.”

 ?? Caltech/MIT/LIGO Lab / New York Times ?? Texas Tech’s Tom Maccarone, co-author of the latest study, and a global group of astronomer­s use radio telescopes like this one in Hanford, Wash., to seek answers about black holes.
Caltech/MIT/LIGO Lab / New York Times Texas Tech’s Tom Maccarone, co-author of the latest study, and a global group of astronomer­s use radio telescopes like this one in Hanford, Wash., to seek answers about black holes.
 ?? Internatio­nal Centre for Radio Astronomy Research / New York Times ?? This illustrati­on shows how astronomer­s observed the Cygnus X-1 system from different angles, using the Earth’s orbit.
Internatio­nal Centre for Radio Astronomy Research / New York Times This illustrati­on shows how astronomer­s observed the Cygnus X-1 system from different angles, using the Earth’s orbit.

Newspapers in English

Newspapers from United States