Lodi News-Sentinel

San Diego students restore motion to 5-year-old boy’s arms

- By Paul Sisson

SAN DIEGO — His arms paralyzed by a rare virus three years ago, Max Ng has struggled to push, pull and poke his way through the world with the gleeful ease that most 5 year olds enjoy.

But a device built by four clever UC San Diego engineerin­g students delivers just the help he needs to reach out and touch the world in ways that have long been out of reach.

Cameras watching Friday morning at Rady Children’s Hospital, Max was strapped into a pair of motor-assisted orthotic braces, his fingers sliding into sensor-loaded gloves.

Once the contraptio­n was in place, tilting his wrist up caused his arm to raise, bending at the elbow. Tilting down accomplish­ed the opposite motion, and Max was quick to start roughhousi­ng with his father, Dr. Ted Ng, landing a few light punches before reaching up and grabbing his dad’s nose.

While that kind of play drew laughs, Ted Ng said he has been looking forward to a slightly different maneuver that has been difficult for his boy to accomplish.

“One of the things I missed the most is him just grabbing me for a hug,” Ng said. “It just feels nice, you know, to have him wrap his arms around you.”

Max is one of more than 500 kids nationwide who have experience­d such devastatin­g symptoms since 2014. His condition, called acute flaccid myelitis, is thought to be caused by infection from viruses in the same family as the germ that causes polio.

Researcher­s have yet to determine why most kids are unaffected, but a very, very few end up with devastatin­g nerve damage, quickly stealing away use of arms, legs or other body parts with a cruel randomness that is at once mystifying and potentiall­y deadly.

Dr. Andrew Skalsky, a rehabilita­tion medicine physician at Rady, said that Max is rare among AMF patients. The boy retained full control of the muscles in his wrists and hands even as loss of the motor nerves attached to the major muscles in his arms and shoulders have atrophied, leaving both appendages hanging limp at his sides. Wrist and finger dexterity intact, Max has developed clever ways to raise his arms, pushing them up with his knees to bring his hands close to what he wants to grasp.

But certain tasks, such has hugging his parents or young sister, remain out of reach. Those kinds of tasks require lifting both arms simultaneo­usly, a task that’s difficult if you’re using your knees to do the lifting.

Skalsky said using some sort of motorized brace to do the work Max’s muscles can’t has seemed like a great idea for some time. But existing braces, with beefy frames and large motors, have been too heavy to do the job.

“His shoulder girdle muscle isn’t there anymore, and just the weight of the brace alone, even without the motors, would dislocate his arm pretty easily,” Skalsky said.

Something much lighter, made to meet Max’s exact set of challenges, would be necessary. But because no two AMF patients experience exactly the same issues, there was no real incentive for a company to invent the right product and start selling it on the open market.

A custom solution designed and built just for Max was what was needed, and Skalsky thought he knew just how to get the job done without breaking the bank.

In September, he submitted an applicatio­n to UC San Diego’s Jacobs School of Engineerin­g, which requires all seniors in its mechanical and aerospace engineerin­g program to complete a capstone course, teaming up to solve real-world problems posed by people in the community.

The challenge was accepted, and four students were assigned to spend just 10 weeks fabricatin­g a solution.

The team quickly learned that they would need to come up with a way not just to minimize weight by using ultralight components, but also would need a way to transfer that weight to Max’s torso.

Through rapid prototypin­g, using 3D printers and computer simulation, the team was able to make prototype after prototype, tweaking designs for a harness, arm braces and other critical components over and over again until they had something that worked well enough to be machined in lightweigh­t aluminum and sewed together by a profession­al seamstress.

The team even sources ultralight motors called linear actuators capable of generating enough force to lift more than a pound while weighing only about as much as a ballpoint pen. Special sensors capable of being built into custom gloves were able to detect the motion of Max’s wrists and a specially-programmed micro computer loaded with custom computer code was used to translate the data from the wrist sensors into smooth motion of the actuators.

 ?? HAYNE PALMOUR IV/ SAN DIEGO UNION-TRIBUNE ?? Max Ng, whose arms are paralyzed due to acute flaccid myelitis, is able to lift his hand and touch the hand of his father, Ted Ng, thanks to a custom motorized orthotic brace that students at UC San Diego have created, during a demonstrat­ion of the brace at Rady Children’s Hospital on June 14 in San Diego.
HAYNE PALMOUR IV/ SAN DIEGO UNION-TRIBUNE Max Ng, whose arms are paralyzed due to acute flaccid myelitis, is able to lift his hand and touch the hand of his father, Ted Ng, thanks to a custom motorized orthotic brace that students at UC San Diego have created, during a demonstrat­ion of the brace at Rady Children’s Hospital on June 14 in San Diego.

Newspapers in English

Newspapers from United States