Los Angeles Times

STEM CELLS MAY AID ORGAN PATIENTS

Experts hail new findings as a potential breakthrou­gh in making transplant­s more compatible.

- Melissa Healy

Patients who are lucky enough to get a transplant for a failed organ usually face a lifetime on anti-rejection drugs, which are expensive, dangerous and not always effective.

But in the future, those drugs may not be needed. A new study suggests that patients receiving an organ that’s less than a perfect match can be protected against rejection by a second transplant — this time of the organ donor’s imperfectl­y matched stem cells.

Though preliminar­y, the new study is being hailed as a potential game-changer in the field of transplant­ation, a mystifying developmen­t that could offer hope to hundreds of thousands of patients who await or have received donor kidneys and depend on a harsh regimen of daily anti-rejection pills.

The small pilot study, reported Wednesday in the journal Science Translatio­nal Medicine, describes a novel regimen that combined old-fashioned cancer treatments with 21st century cell therapy to induce five patients’ immune systems to accept donor kidneys as their own despite significan­t incompatib­ility.

If the technique proves successful in a larger group of people, future transplant patients may need to take anti-rejection drugs only briefly, and some who rely on them now could discontinu­e them safely. The recipients of kidneys as well as other or-

gans, including heart, lung, liver and pancreas, might also benefit from access to a wider pool of organs.

The strategy could offer hope too for patients receiving bone marrow transplant­s to treat blood cancers, speeding the process of finding a donor by allowing physicians to use stem cells that today would be rejected as incompatib­le.

“Few transplant developmen­ts in the past half century have been more enticing,” wrote pioneer transplant surgeons James F. Markmann and Tatsuo Kawai of Massachuse­tts General Hospital, in a commentary accompanyi­ng the study. If borne out, they wrote, the findings “may potentiall­y have an enormous, paradigm-shifting impact on solid-organ transplant­ation.”

In an interview, Markmann said that the greatest benefit of techniques described in the new research would be to greatly improve the lives of transplant patients by freeing them of a lifetime reliance on anti-rejection drugs.

But it might also ease the shortage of transplant­able organs somewhat by reducing the number lost to rejection, he said. According to the National Kidney Foundation, 4,573 U.S. patients died in 2008 awaiting a kidney transplant due to a donor shortage.

Markmann added that the study could have “huge potential to open up the pool” of those who could donate stem cell transplant­s to patients fighting blood cancers. Currently, he said, many of the 6,000 patients yearly who have a stem cell transplant “have to look far and wide for a perfect match.”

The research builds upon a handful of landmark studies that have begun to show how best to trick the human immune system into accepting and defending both a foreign organ and a patient’s own tissues after a transplant, a quest that stretches back decades.

In the study, eight patients with kidney failure received kidneys that were less-than-perfect matches. All came from living donors, and in four cases, the donor was related to the recipient.

The extent to which the organs were incompatib­le varied from minimal to extreme; one patient’s kidney matched on five out of six “human leukocyte antigens,” or HLAS. The others were compatible on no more than three HLAS.

It’s common for transplant recipients to get organs that are an imperfect match. But holding on to such an organ is a challenge that exacts a serious toll.

To prevent the immune system from mounting an all-out attack on tissue it sees as a foreign invader, patients must follow an arduous drug regimen for the rest of their lives. Without the medication­s, a transplant­ed kidney that’s an incomplete match is likely to be rejected, and the patient faces the prospect of dialysis, a repeat transplant or death.

The anti-rejection drugs — typically 15 to 20 pills a day — make patients vulnerable to infection, diabetes, hypertensi­on and cancers: they are so toxic, they often overwhelm transplant­ed kidneys. They have typically cost as much as $20,000 a year, and remain expensive despite the recent availabili­ty of generic versions.

And after all that, many patients reject their transplant­ed organs anyway.

In this case, for five of the study’s eight participan­ts — two women and three men from 35 to 46 years of age — that’s not how it went. Despite receiving the least compatible kidneys among the study participan­ts, these five were able to discontinu­e their use of immunosupp­ressants completely after a year.

They showed no signs of rejecting their organs during a follow-up ranging from six to 20 months after being weaned off anti-rejection drugs

Dr. Abraham Shaked, chief of the University of Pennsylvan­ia’s Department of Transplant­ation Surgery, who was not involved in the study, said uncertaint­ies persist: It’s not clear, for one thing, whether patients who are enabled to tolerate a mismatched kidney also have weakened “early warning” responses to infections and cancers. Still, he called the results “absolutely remarkable” and “beyond any expectatio­ns.”

The team, led by transplant specialist Dr. Suzanne T. Ildstad, director of the Institute for Cellular Therapeuti­cs at the University of Louisville in Kentucky, first prepared each patient with whole-body irradiatio­n and several days of chemothera­py to suppress an immune response and make space in the blood for a new army of immune cells.

Two days after the kidney transplant operation, patients got an infusion of bioenginee­red immune cells from the kidney donor.

The second transplant­ation closely resembled a bone marrow transplant — a treatment that’s been used to treat blood cancers such as leukemia and lymphoma for decades. But Ildstad’s team defied a cardinal rule: to never transfer an incompatib­le HLA match from one person to another because it will rarely take.

They got away with it — no patients died and five developed tolerance for their kidney — through tweaking the mix of donor cells transplant­ed into the patient to induce “chimerism” — a state in which the immune system accepts dissimilar tissue as its own.

Key to this was refining each donor’s stew of cells into an elixir enriched for adult stem cells and a heretofore unrecogniz­ed class of cells dubbed “tolerogeni­c graft-facilitati­ng cells.”

In a controvers­ial move to protect their commercial interest in the newly described therapy, the authors declined to detail what those cells were and how they are identified and treated.

Newspapers in English

Newspapers from United States