Los Angeles Times

In space, a surprising twist

Researcher­s describe a phenomenon in chemistry that seems to cheat the classical laws of physics.

- By Amina Khan amina.khan@latimes.com

With the help of a little alcohol, scientists have discovered supposedly impossible chemical reactions in the cold reaches of space. Organic molecules such as methanol are being created and destroyed in clouds of interstell­ar gas, thanks to a spooky process called quantum tunneling.

The findings, published this week in Nature Chemistry, reveal a mind-boggling phenomenon that seems to be cheating the classical laws of physics.

Scientists have long wondered how space chemistry occurs at such cold temperatur­es.

That’s because when molecules come together, they need a little energy to break and form new bonds. But much of outer space is cold, lacking the energy to fuel these chemical reactions, said study coauthor Dwayne Heard, a physical chemist at the University of Leeds in England.

And yet, such reactions must be taking place: Researcher­s have found a complex molecule called methoxy, one of the products of a reaction involving methanol. Methanol, a type of alcohol found in fuel and antifreeze, has a reputation for giving bootleg liquor its poisonous edge.

To f ind out how such chemical reactions were happening in cold, dark space, Heard and his colleagues created the same sort of environmen­t in a lab — bringing the thermostat down to about the same temperatur­e seen in some interstell­ar gas clouds.

They found that at 346 degrees below zero Fahrenheit, the reactions in the gas were happening about 50 times faster than at room temperatur­e.

“We were pretty surprised,” Heard said.

How could this be? The scientists believe it’s possible to take a shortcut past the barrier to chemical reactions — and the laws of classical physics — with a phenomenon called quantum tunneling.

This little cheat code is made possible by the uncertaint­y principle in quantum physics.

Think of an atom’s position as a set of probabilit­ies. Given that it can be very difficult to know a particle’s exact position in front of a barrier, there’s a low — very low, but very real — probabilit­y that the particle is actually on the other side of the barrier.

Obviously, everyday objects such as coffee mugs and car keys don’t wink out of one place and reappear in another. But quantum physics works on tiny scales — say, at the scale where atoms are whacking into one another inside interstell­ar clouds of gas and dust.

It seems the deep freeze may be aiding the reactions in space rather than impeding them.

The cold slows down the molecules, which stay near one another longer rather than quickly bouncing off of one another. Slowing them down widens the window of opportunit­y for quantum tunneling by a thousand times or more, Heard said.

“We’re talking about nanosecond­s or something,” Heard said, “but that is still a long time scale compared to a normal collision.”

Newspapers in English

Newspapers from United States