Macworld (USA)

How fast will the A15 processor be?

How fast will it be?

- BY JASON CROSS

Typically, Apple stays quiet about its future processors, preferring to announce them along with a new product. For example, we didn’t get specifics about the M1 (fave. co/2pumxbu) until Apple unveiled the new Macbooks powered by it, and we knew very little about the A14 (fave.co/3dfogop) before it showed up in the ipad Air. So we probably won’t hear about the A15, the first of a new generation of Apple system-onchips (Socs), until Apple unveils the iphone 13 (fave.co/2qwyiyo) later this year.

However, we can still piece together a picture of our possible future. By studying the trend for past A-series processors and what we know about cutting-edge silicon manufactur­ing, along with making a few educated guesses, we can get a pretty good idea of what to expect from the A15.

STILL 5NM, BUT ENHANCED

With the A14, Apple made the leap from a 7nm manufactur­ing process to TSMC’S brand-new 5nm process. In fact, it was the first large-scale consumer chip of any kind to be made with that process (Qualcomm’s 5nm Snapdragon 888 [fave.co/3feq16f] launched a couple months later).

The next step along the path to ever smaller and more power-efficient chip manufactur­ing technology is 3nm. That’s going to be a big deal, with nearly double the chip logic density along with either a 25% to 30% reduction in power at the same performanc­e or a 10% to 15% improvemen­t in performanc­e at the same power.

But 3nm simply isn’t ready yet. Apple pays handsomely to be the first to use TSMC’S most advanced new manufactur­ing techniques, but TSMC simply won’t be able to make tens of millions of 3nm chips for Apple until next year’s A16.

In the meantime, Apple is expected to use a refined version of the 5nm manufactur­ing process for the A15 that may slightly improve its performanc­e and power characteri­stics.

BIGGER SIZE,

MORE TRANSISTOR­S

The A14 is estimated to be just under 90mm2 (about 10% smaller than the A13), but the largest iphone Socs so far have been a little over 100mm2. But with no major advancemen­t in manufactur­ing process technology to rely on with the A15, the performanc­e and power improvemen­ts will need to come mostly from architectu­ral improvemen­ts and from simply making a bigger chip, much as with the A13 versus the A12. So let’s assume the A15 will be around 15% to 20% bigger at most, with a transistor budget to match. No iphone SOC has been larger than that.

That puts the hypothetic­al transistor budget of the A15 in the range of around 14 billion. There’s a lot of wiggle room in that estimate, and Apple has to make a lot of hard decisions about chip size versus cost and performanc­e. As a very broad rule of thumb, I’m expecting the company has around 15% to 20% more transistor­s to work with and I base my performanc­e and feature prediction­s on that value.

CPU PERFORMANC­E

Improvemen­ts in single-core CPU performanc­e for Apple’s A-series Socs have been remarkably consistent over the last several years. I expect this trend is likely to continue, which would put the A15’s single-core Geekbench 5 result at around 1,800, perhaps a little more.

That’s ridiculous. Apple is just lapping Android phones at this point. A score of 1,800 is roughly 75% faster than the Snapdragon 888 in the Galaxy S21. For

that matter, the A12 from late 2018 is a little bit faster than the Samsung Galaxy S21 (fave.co/3m9bjft), which received 1,076 in our testing. Apple is in a league of its own.

There’s not much reason for Apple to expand the number of cores beyond the current setup: two high-efficiency cores and four highperfor­mance cores. Multicore performanc­e improves as single-core performanc­e does, but often to a lesser degree (thanks to cache contention, resource allocation, thermal constraint­s, and so on). A Geekbench 5 multicore score of 4,800 wouldn’t be out of the question, but my guess is that we’ll get closer to a score of 4,600.

Again, this would just be embarrassi­ng for the Android phones, which have only just now been able to surpass the 3,000 mark.

GRAPHICS PERFORMANC­E

Apple’s got its own custom quad-core GPU

in the A14, and it’s just barely faster than the quad-core GPU in the A13. But the A13 was a lot faster than the quad-core GPU in the A12. In other words, don’t get too hung up on how many “cores” the GPU in the A15 has. After all, graphics performanc­e is reliant on so many considerat­ions, not the least of which is available memory bandwidth.

Following a simple trendline, I would expect a score of around 7,200 or so in the 3Dmark Sling Shot Unlimited test. That’s very good, but not a very big leap over the A14.

The Sling Shot test is pretty ancient at this point, however. The new 3Dmark Wild Life (fave.co/3ri4umv) test is far more modern and offers a better representa­tion of how modern GPUS handle the latest high-end 3D games. Frame rates in that test could get into the high 50s, perhaps even reaching that magic 60fps number.

We shouldn’t just look at 3D graphics performanc­e. Increasing­ly, Apple seems concerned with improving the compute capabiliti­es of its GPUS. That means using the GPU to process massively parallel math routines often used in image and video manipulati­on, artificial intelligen­ce and machine learning, and scientific work. Geekbench 5 has a test for this GPU compute capability using the Metal API, and Apple’s A-series chips get a lot faster with every release. The score for the A15 could be as high as 12,000, on par with the ipad Pros that use the A12Z. That’s comparable to Geforce GTX 980M performanc­e.

However, if current 3D graphics performanc­e is bottleneck­ed primarily by memory bandwidth, and Apple manages to greatly improve it (through bigger and/ or better caches or a move to LPDDR5), we could get a much bigger GPU performanc­e boost.

LPDDR5 RAM, FINALLY?

I speculated last year that Apple would make the switch from LPDDR4X, which the last three generation­s of A-series chips featured, to LPDDR5, the RAM used in the Galaxy S21 and other high-end Android phones. Oddly enough, that didn’t happen—the A14, and even the M1 that is based on it, use LPDDR4X.

This has got to be the year Apple takes the leap. Doing so will provide up to 50 percent more memory bandwidth at equivalent power. This will make it easier to keep all the CPU and GPU cores fed with data, which means you’ll get better sustained performanc­e. It might also lower power consumptio­n, extending the battery life.

When it comes to benchmarks, tests will often fit

into the processor’s cache and don’t scale directly with memory bandwidth. Realworld applicatio­ns tend to benefit more from additional memory bandwidth than synthetic benchmarks do. Modern highend 3D graphics typically scale well with additional bandwidth, however. The switch to LPDDR5 will improve any memoryboun­d situation, but will have the most obvious impact on high-end graphics applicatio­ns.

IMAGE PROCESSING AND NEURAL ENGINE

We don’t often get a lot of detailed informatio­n about Apple’s “uncore” parts of the SOC. Apple silicon has a wide array of encoders and decoders, image processing, audio DSPS, and other stuff to accelerate specific tasks. These are all important, but it’s hard to isolate them to measure performanc­e. Will this be the first Apple silicon to include a hardware decoder for the AV1 video codec? I hope so!

However, we do get some top-line informatio­n about one such specialpur­pose accelerato­r: the Neural Engine, Apple’s machine-learning processing array. The A14 featured 16 Neural Engine cores, double the number of cores found in the A13. Along with other enhancemen­ts, this boosted performanc­e to 11 trillion operations per second (TOPS).

Apple puts a huge emphasis on machine learning, and it’s sure to want to boost performanc­e in that area much more. Again, I’d expect some combinatio­n of architectu­ral improvemen­ts and additional cores, though the latter may be constraine­d somewhat by the limited chip size and transistor budget. I’d estimate a final performanc­e figure between 15 and 20 TOPS, but that’s pretty much a guess.

AN UPGRADE TO THE MODEM

The current iphone 12 lineup uses Qualcomm’s Snapdragon X55 modem. While the company has announced the X65 (fave.co/3mf3agq), it won’t be ready in time for this year’s new iphone. Qualcomm announces these modems months before it begins volume production, and then it takes many months more for phone makers to integrate, test, and qualify them.

In short, the A15 will likely be paired with the Snapdragon X60 modem (fave. co/31eofk8). The X60 supports the same peak speeds as the X55 (well in excess of what any carrier can deliver right now), but it should deliver high speeds more consistent­ly thanks to improved carrier aggregatio­n technology.

The biggest improvemen­t is likely to be in the arena of battery life; the X60 is made with a 5nm process, while the X55 used a 7nm process. That means you’ll see a smaller, lower-power chip, and probably less of a battery life penalty for using 5G.

As far as other wireless features go, we can expect continued support for Wi-fi 6, Bluetooth 5, NFC, and ultra wideband (UWB). We might even see a jump to the newer

Wi-fi 6E (see page 41). Not many routers support the 6GHZ frequency spectrum yet, but it will be more common by this fall when the iphone 13 is introduced, and everywhere over the lifetime of the product. ■

 ??  ??
 ??  ?? With no additional CPU cores, the A15 will likely have multicore performanc­e gains that follow its single-core performanc­e. GEEKBENCH 5 MULTI-CORE SCORE
With no additional CPU cores, the A15 will likely have multicore performanc­e gains that follow its single-core performanc­e. GEEKBENCH 5 MULTI-CORE SCORE
 ??  ?? The A14’s single-core CPU performanc­e is already crazy, and the A15’s will probably be even crazier. GEEKBENCH 5 SINGLE-CORE SCORE
The A14’s single-core CPU performanc­e is already crazy, and the A15’s will probably be even crazier. GEEKBENCH 5 SINGLE-CORE SCORE
 ??  ?? This is a much more modern 3D graphics test, and a better example of what we can expect in terms of high-end game performanc­e. 3DMARK - WILD LIFE UNLIMITED (FPS)
This is a much more modern 3D graphics test, and a better example of what we can expect in terms of high-end game performanc­e. 3DMARK - WILD LIFE UNLIMITED (FPS)
 ??  ?? At this point, this benchmark is pretty far out of date. 3DMARK - SLING SHOT EXTREME UNLIMITED
At this point, this benchmark is pretty far out of date. 3DMARK - SLING SHOT EXTREME UNLIMITED
 ??  ?? GPU compute performanc­e has been a focus for Apple. GEEKBENCH 5 COMPUTE SCORE
GPU compute performanc­e has been a focus for Apple. GEEKBENCH 5 COMPUTE SCORE
 ??  ?? The latest phones have LPDDR5 memory, for about 50% more bandwidth than LPDDR4X.
The latest phones have LPDDR5 memory, for about 50% more bandwidth than LPDDR4X.
 ??  ?? The Snapdragon X60 modem should perform similarly to the 5G modem in the iphone 12 line, but with lower power consumptio­n.
The Snapdragon X60 modem should perform similarly to the 5G modem in the iphone 12 line, but with lower power consumptio­n.

Newspapers in English

Newspapers from Australia