SAIL

Boatworks

Lithium-ion technology has many advantages over lead-acid batteries. Nigel Calder looks into them

-

Nigel Calder looks at the latest marine Lithium-ion batteries

Lithium-ion batteries have several times the energy storage capacity of an equivalent volume and weight of lead-acid batteries, and can be charged at extraordin­arily high rates of charge to very high states of charge. They can be discharged almost totally without damage anywhere from hundreds of times to thou- sands of times. They are immune to sulfation and as such can be operated permanentl­y in a partial state of charge.

Whereas the most efficient lead-acid batteries (AGM) are only 85 percent efficient at converting electrical energy into chemical energy and vice versa, lithium-ion is better than 95 percent efficient, resulting in far less heat generation during high-rate discharges and recharges—an important considerat­ion with my current high charge rate experiment­s. This is an amazing set of positive characteri­stics. There are, however, some potential negatives.

PREVENTING FIRES

Every lithium-ion battery currently in the

marine marketplac­e contains a flammable electrolyt­e, and all lithium-ion batteries can be driven into an exothermic state—one in which the battery generates heat internally even when disconnect­ed from charging sources and loads. Once initiated, this exothermic reaction can be hard to stop, resulting in a rapid temperatur­e rise (thermal runaway) that only aggravates the situation. Depending on the chemistry, the battery may get hot enough to set itself on fire (as happened on the Boeing aircraft), and even if the chemistry cannot get this hot there will be a pressure rise that frequently leads to venting of the electrolyt­e, after which, if there is any kind of an ignition source, the electrolyt­e will then catch fire. Once the electrolyt­e lights up, it generally cannot be extinguish­ed—the usual result is the loss of the boat, as has already happened in a number of cases.

Conditions that can initiate thermal runaway include over-charging, over-dischargin­g followed by a recharge, charging in freezing temperatur­es, operating in high ambient temperatur­es, manufactur­ing defects, external heat and physical damage. Several of these conditions are not uncommon in marine applicatio­ns! What is more, whereas in automotive and other mass applicatio­ns the battery builder and installer have near complete control over the installati­on for its entire life, once a boat gets into the hands of its owner there is no telling who will mess with what installati­on and its wiring over the life of the boat.

To ensure the safety of lithium-ion batteries in the boating world, a sophistica­ted battery management system (BMS) is required that, at a minimum, monitors voltage and temperatur­e at the individual battery cell level, and has mechanisms to shut the battery down if it is abused or if any one cell begins to drift outside designated parameters. Unfortunat­ely, an effective BMS is expensive to develop and implement. However, without it, the battery can threaten the health of the boat.

To put this in perspectiv­e, we had similar problems with gasoline and propane when these were first introduced to boats, with numerous fires and explosions. However, we learned how to handle these substances, with various organizati­ons promulgati­ng standards to ensure safe installati­ons. Notable among these is the American Boat and Yacht Council (ABYC). The ABYC is currently working on a standard for lithium-ion batteries and installati­ons. In time, problems will become as rare as they now are with gasoline and propane.

COST COMPARISON­S

Cost is the other major drawback of lithiumion batteries. The individual cells may not be that expensive, but they have to be packaged into a battery and the aforementi­oned BMS added: a BMS that needs to be custom developed for the relatively low-volume marine marketplac­e. The net result is that it is rare to find a marine lithium-ion battery that retails for less than $1,000 per kilowatt-hour (kWh) of capacity, with some running as high as $2,000. By comparison, a 100 amp-hour (Ah), 12 volt, lead-acid battery has a nominal capacity of 1.2 kWh with a cost of one tenth to one fifth that of the same capacity in lithium-ion.

Happily for lithium-ion, this cost comparison is grossly misleading! At best, the lead-acid battery will only deliver half its capacity each time it is discharged and recharged (cycled), whereas lithium-ion will easily deliver 80 percent of its capacity. The lead-acid battery can only be cycled hundreds of times before it fails whereas lithium-ion, depending on its chemistry and constructi­on, may be cycled thousands of times. A true measure of the cost of a battery is how much energy can be cycled through it during its lifetime (what I like to call the lifetime kilowatt-hour throughput), divided by the battery’s purchase price. This will yield a cost per kWh of throughput. In many applicatio­ns, if the capabiliti­es and cycle life of lithium-ion can be fully exploited (although in practice, this is often not the case) even at today’s prices lithium-ion will have a lower cost per kWh of throughput than any lead-acid battery.

The deeper we delve the better it gets for lithium-ion. Let’s say I am running my main engine or generator to battery charge at anchor. We have to include the engine run time, fuel and maintenanc­e in the cost of the energy being produced, along with the battery cost per kWh of throughput. If I have an 8kW charging device and I have lithium-ion batteries that can absorb the full 8kW to a high state of charge (whereas lead-acid batteries will, on average, only absorb half this, and likely far less than half this), then I can cut the engine run time for battery charging in half. If I run the numbers, I will find this dramatical­ly reduces my cost of energy, more-or-less regardless of the cost of the lithium-ion batteries. In this situation, ensuring the safety of the lithium-ion installati­on becomes more important than its cost.

CHEMISTRY CHOICES

Two chemistrie­s predominat­e in the marine lithium-ion world: lithium-ion iron phosphate (LFP), and nickel manganese cobalt (NMC). If LFP is driven into thermal runaway it will not generate high enough temperatur­es to set itself on fire, whereas NMC can. For this reason, LFP has often been described as intrinsica­lly safe and has been promoted as the only suitable chemistry for marine applicatio­ns. However, as noted above the electrolyt­e is still flammable and there have been some notable fires and boat losses.

Within the LFP and NMC families, there are literally dozens of variations in terms of things like constructi­on, chemical doping and protective measures. Given the correct BMS and packaging, it is arguable that NMC can be made as safe as LFP, and there are certainly some NMC batteries that are safer than some LFP batteries. Ultimately, for the consumer, regardless of chemistry, the only real protection is to buy from a recognized marine vendor with an excellent track record.

Surprising­ly, perhaps the biggest impact on what will come to predominat­e in the marine world—LFP, NMC or some other chemistry—may be the fall-out from the VolksWagen “dieselgate” scandal, which has caused a major re-think in Europe regarding diesel cars in general. Whereas tax structures have for decades favored diesels, with the result that 60 percent of new car sales have been diesels, there is now talk of banning diesels altogether from city centers. Automotive manufactur­ers are therefore scrambling to adjust to this new reality, with a massive re-orientatio­n towards electric cars, which in turn, will require lithium-ion batteries in large numbers at low costs. In order to achieve this, the industry will have to settle on a specific chemistry and format, and tool up the factories for volume production. Once this happens it will, to some extent, lock in for some time to come what will dominate the marketplac­e.

As of now, it looks like NMC will be the chemistry. We are already seeing at least two marine lithium-ion battery players—Torqeedo and Volta—partner with automotive suppliers to repackage NMC cells for boats. Lithionics, formerly a strong proponent of LFP, is also developing an NMC offering. However, we have also seen Yanmar issue a (June 2017) Technical Bulletin that only allows LFP to be used with their factory-installed alternator­s.

AMAZING ELECTRICAL SYSTEMS

Regardless, both LFP and NMC have the properties we need for the massively-powerful, 8-plus kW alternator-type device I am currently testing. A relatively small battery pack, rated at around 10 kWh capacity, will be able to absorb the full output of the machine up to almost a 100 percent state of charge. The more than 95 percent battery efficiency will ensure that little charging energy is wasted as heat. The ability to withstand near 100 percent discharges for thousands of cycles will enable us to utilize at least 8 kWh of the 10 kWh battery capacity at each cycle. The immunity to damage from sulfation will permit operation in a partial state of charge whenever, and for however long, we want.

On our boat, with our current energy needs of under 3 kWh a day, one battery charge will keep us going for three days, or alternativ­ely, 20 minutes spent setting or retrieving the anchor and getting in and out of a slip will give us all the energy we need for 24 hours. I even am thinking of converting to electric cooking and getting ride of the boat’s propane system! Bottom line: lithium-ion, coupled to the generating device we have developed and tested over the past several years, will give me the energy system I have always dreamed of. s

 ??  ?? A lithium-ion battery bank may be the best solution for many long-distance cruisers
A lithium-ion battery bank may be the best solution for many long-distance cruisers
 ??  ?? Lithium-ion batteries are available in many sizes
Lithium-ion batteries are available in many sizes

Newspapers in English

Newspapers from United States