San Francisco Chronicle

The custom, connected future of medical devices

Redwood City company’s smart pill is among the key innovation­s

- By Janet Morrissey

When Jeff Dachis suddenly and unexpected­ly learned he had Type 1 diabetes at the age of 46 in September 2013, he was stunned. After all, he ran marathons, followed a healthy diet and never had an inkling of any medical troubles during annual physicals.

“I went to the doctor, got about six minutes with a nurse practition­er, an insulin pen, a prescripti­on and a pat on the back, and I was out the door,” Dachis said. “I was terrified. I had no idea what this condition was about or how to address it.”

Feeling confused and scared, he decided to leverage his expertise in digital marketing, technology and big data analytics to create a company that helps diabetics understand and manage their disease.

His One Drop system combines sensors, an app and a Bluetooth glucose meter to track a diabetic’s blood glucose levels, food, exercise and medication. It uses artificial intelligen­ce to predict the blood glucose level over the next 24 hours and even suggests ways to control fluctuatio­ns, such as walking or exercising to offset high sugar levels — or eating a candy bar to increase glucose. Users can also text a diabetes coach with questions.

With 30 million Americans living with diabetes, Dachis said he knew the potential market for his technology was big. Indeed, more than 1 million people have downloaded the app, he said.

One Drop is among a surging number of companies that are using “internet of things,” also known as IoT, technology to create new treatments in the health care sector.

“Advances like robotics, nanotechno­logy, genetic engineerin­g, 3-D

printing, artificial intelligen­ce and IoT are fueling an exciting era within health care innovation,” said Jeff Becker, a senior analyst and health care IT expert at Forrester. “Many of these efforts will undoubtedl­y fall flat, but some could end up as transforma­tive as the X-ray itself.”

And consumers are paying attention.

About 79 percent of consumers surveyed in the United States said technology is important to managing their health, according to a 2019 report by Accenture.

The latest tech-related medical treatment advances run the gamut from implants that help paralyzed people walk to smart pills that detect when patients fail to take their medication.

Spinal cord research took a major step forward when a 29-year-old man, who had been paralyzed from the chest down since a snowmobile accident in 2013, was able to walk the distance of a football field with the help of a rolling walker. The milestone, published in Nature Medicine last fall, came after a team of researcher­s at the Mayo Clinic implanted an epidural electrical stimulator device into the man’s lower spine and gave him six months of intensive physical therapy.

“This is a revolution­ary breakthrou­gh,” said Kendall Lee, a neurosurge­on and director of neural engineerin­g laboratori­es at the Mayo Clinic. He said the device had so far been successful­ly implanted in two people.

Then there’s the smart pill. The World Health Organizati­on estimated that 50 percent of people with chronic diseases in developed countries fail to take their medicines as prescribed, whether from forgetfuln­ess, concern about side effects or something else.

This noncomplia­nce costs the heath care system in the United States from $100 billion to $290 billion a year from emergency room visits, hospital stays and other costs related to worsening medical conditions, according to the Network for Excellence in Health Innovation.

AdhereTech built a smart pill bottle that alerts patients when it’s time to take a medication and sends an automated text or phone message if they miss a dose. But it only tracks the use and contents of the bottle, so there’s no definitive way to detect whether a person has actually swallowed the pill.

Pharmaceut­ical maker Otsuka goes a step further: It worked with Proteus Digital Health of Redwood City to create a smart pill for Otsuka’s Abilify medication, which is used to treat schizophre­nia, bipolar disorder and depression. The Abilify MyCite pill, which will be rolled out in the next few months, is embedded with a sensor that’s activated by stomach acids. The sensor is tracked by a patch worn on the person’s stomach, which then sends the informatio­n to an app, where the patient and doctor can track when, or if, the medication was taken.

But the technology goes beyond pill-taking reminders, said Andrew Thompson, co-founder, president and chief executive of Proteus. The sensor patch also tracks physical activity, heart rate, rest patterns and other metrics, which will help doctors and patients know whether a medication is working and the right dose has been prescribed.

The Abilify MyCite pill doesn’t come cheap: It will cost $1,650 a month, significan­tly more than the $30- to $40-a-month cost of a generic version of the Abilify pill. However, most patients would only take the digital pill for two to three months — just enough time to collect data on pill-taking adherence, dosage and health impact to revise a treatment plan, said Andrew Wright, Otsuka’s vice president of digital medicine.

Efforts are under way for both Proteus and Otsuka to add the technology to pills for other chronic conditions. Thompson believes it’s the future.

“Years from now your grandchild­ren or your children will be incredulou­s that you put things into your body and didn’t know if they were real or fake, the right dose or the wrong dose, in-date or out-of-date,” Thompson said. “So yes, eventually this will be in every drug everywhere.”

In the world of prosthetic­s, scientists have found a way for tetraplegi­cs — those paralyzed from the neck down — to feel touch by electrical­ly stimulatin­g parts of the brain. Paralysis can mean the loss of both control and feeling in affected areas, and while prosthetic­s can return motor function, sensing requires treatment of the nervous system itself.

Initially, the challenge seemed daunting, considerin­g the brain contains 100 billion neurons, and matching up the neurons that control sensory nerves with the prosthetic hands and arms was tough, said Sliman Bensmaia, an associate professor in the department of organismal biology and anatomy at the University of Chicago, who was part of the research team. But after surgically placing an electrode implant into the brain, the team was able to electrical­ly stimulate the portions of the brain that controlled sensation, allowing the patient to feel the size, shape and texture of objects and to tell when a finger was touched.

Plans are in the works to expand human trials at the University of Pittsburgh, Johns Hopkins University and the University of Chicago. The biggest challenge now? Making the brain implant wireless and upgrading it so that it doesn’t wear out after five years.

“You can’t be having brain surgery every few years,” Bensmaia said. “We need an array or implant technology that lasts a lifetime.”

Bensmaia said the brain implant technology could someday have far-reaching applicatio­ns, such as improving memory or retrieving informatio­n faster.

Another hot area: the use of 3-D printers to create patient-specific medical devices, like knee joints and spinal implants. The printers make it faster, easier and cheaper to make customized medical devices based on a patient’s MRI and CT scans.

Becker, the Forrester analyst, cited the disastrous example of Palo Alto’s Theranos, which made false claims for years that it had a revolution­ary blood-testing technology that required only a small amount of blood. The company raised more than $700 million, was valued at $9 billion at its peak in 2014, and made its founder Elizabeth Holmes a billionair­e, before collapsing after scientists and regulators discovered the technology didn’t work.

“Theranos is the pockmark of health care IT,” Becker said.

But sometimes it’s not malicious — it’s just promising science that doesn’t pan out.

In 2014, the Google X lab, now called Verily, announced — with much fanfare — that it was developing a smart contact lens that could monitor glucose levels in real-time by measuring tear fluid in the eye. The company’s partner on the project, Novartis, said it expected to have the device on store shelves within five years.

“This was huge news — the holy grail of life sciences — it was something that everybody wanted to be the first to bring to market,” Becker said.

But then, “we all waited for updates and nothing came — just radio silence.” Last November, the company announced that the project had been scrapped because of inconsiste­nt testing results.

“So, clearly the science wasn’t there,” Becker said. “They prematurel­y announced it, got excited about it, they made a big splash, and it was all for naught.”

 ?? Photos by Nathan Bajar / New York Times ?? Jeff Dachis is chief executive of One Drop, a diabetes management system that combines sensors, an app and a Bluetooth glucose meter. Below: Dachis shows off some of the company’s technology.
Photos by Nathan Bajar / New York Times Jeff Dachis is chief executive of One Drop, a diabetes management system that combines sensors, an app and a Bluetooth glucose meter. Below: Dachis shows off some of the company’s technology.
 ??  ??
 ?? Carlos Avila Gonzalez / The Chronicle 2017 ?? A Proteus Digital Health technician keeps tabs on a machine that is packaging ingestible sensors.
Carlos Avila Gonzalez / The Chronicle 2017 A Proteus Digital Health technician keeps tabs on a machine that is packaging ingestible sensors.

Newspapers in English

Newspapers from United States