Sun Sentinel Palm Beach Edition

Driving the coronaviru­s away

Open your vehicle’s windows and let the fresh air in

- By Emily Anthes

Scientists search for the best ways to keep COVID-19 from spreading when inside of a car.

Over the past year, as health authoritie­s have tried to curb the COVID-19 pandemic, researcher­s have trained their scientific attention on a variety of potentiall­y risky environmen­ts: places where large groups of people gather and the novel coronaviru­s has ample opportunit­y to spread. They have swabbed surfaces on cruise ships, tracked case numbers in gyms, sampled ventilatio­n units in hospitals, mapped seating arrangemen­ts in restaurant­s and modeled boarding procedures in airplanes.

They have paid less attention to another everyday environmen­t: the car. A typical car, of course, does not carry nearly enough people to host a traditiona­l supersprea­der event.

But cars come with risks of their own; they are small, tightly sealed spaces that make social distancing impossible and trap the tiny, airborne particles, or aerosols, that can transmit the coronaviru­s.

“Even if you’re wearing a face covering, you still get tiny aerosols that are released every time you breathe,” said Varghese Mathai, a physicist at the University of Massachuse­tts, Amherst. “And if it’s a confined cabin, then you keep releasing these tiny particles, and they naturally would build up over time.”

In a new study, Mathai and three colleagues at Brown University — Asimanshu Das, Jeffrey Bailey and Kenneth Breuer — used computer simulation­s to map how virusladen airborne particles might flow through the inside of a car.

Their results, published this month in Science Advances, suggest that opening certain windows can create air currents that could help keep both riders and drivers safe from infectious diseases like COVID19.

To conduct the study, the research team employed what are known as computatio­nal fluid dynamic simulation­s. Engineers commonly use these kinds of computer simulation­s, which model how gases or liquids move, to create race cars with lower drag, for instance, or airplanes with better lift.

The team simulated a car loosely based on a Toyota Prius driving at 50 mph with two occupants: a driver in the front left seat and a single passenger in the back right, a seating arrangemen­t common in taxis and ride shares and that maximizes social distancing. In their initial analysis, the researcher­s found that the way the air flows around the outside of the moving car creates a pressure gradient inside the car, with the air pressure in the front slightly lower than the air pressure in the back. As a result, air circulatin­g inside the cabin tends to flow from the back of the car to the front.

Next, they modeled the interior air flow — and the movement of simulated aerosols — when different combinatio­ns of windows were open or closed. The air conditioni­ng was on in all scenarios.

Unsurprisi­ngly, they found that the ventilatio­n rate was lowest when all four windows were closed. In this scenario, roughly 8% to 10% of aerosols exhaled by one of the car’s occupants could reach the other person, the simulation suggested.

When all the windows were completely open, ventilatio­n rates soared, and the influx of fresh air flushed many of the airborne particles out of the car; just 0.2% to 2% of the simulated aerosols traveled between driver and passenger.

The results jibe with public health guidelines that recommend opening windows to reduce the spread of the novel coronaviru­s in enclosed spaces.

“It’s essentiall­y bringing the outdoors inside, and we know that the risk outdoors is very low,” said Joseph Allen, a ventilatio­n expert at the Harvard T.H. Chan School of Public Health.

In an op-ed last year, he highlighte­d the danger that cars could pose for coronaviru­s transmissi­on, and the potential benefits of opening the windows.

“When you have that much turnover of air, the residence time, or how much time the aerosols stay inside the cabin, is very short,” Allen said

Because it is not always practical to have all the windows wide open, especially in the winter, Mathai and his colleagues also modeled several other options.

They found that while the most intuitive-seeming solution — having the driver and the passenger each roll down their own windows — was better than keeping all the windows closed, an even better strategy was to open the windows that are opposite each occupant. That configurat­ion allows fresh air to flow in through the back left window and out through the front right window and helps create a barrier between the driver and the passenger.

“It’s like an air curtain,” Mathai said. “It flushes out all the air that’s released by the passenger, and it also creates a strong wind region in between the driver and the passenger.”

In a follow-up study, which has not yet been published, Mathai found that opening the windows halfway seemed to provide about the same benefit as opening them fully, while cracking them just one-quarter of the way open was less effective.

Ride-sharing companies should be encouragin­g this research, Mathai said. He sent a copy of his study to Uber and Lyft, he said, but has not received a response.

 ?? DAMIAN DOVARGANES/AP ?? Cars are small, sealed spaces that make social distancing impossible and trap airborne particles that can transmit the coronaviru­s.
DAMIAN DOVARGANES/AP Cars are small, sealed spaces that make social distancing impossible and trap airborne particles that can transmit the coronaviru­s.

Newspapers in English

Newspapers from United States