Texarkana Gazette

Engineers working to make concrete harder for durable roadways

- By David Templeton

PITTSBURGH—For thousands of years, people have built civilizati­ons with concrete made from readily available local materials. Just mix and heat, add some sand, stone and water and put it where you want it. Of course, give it time to harden—that is, after you have left your hand print or initials.

So it’s no surprise that concrete is the world’s most widely used building material. Twice as much concrete has been used to build Pittsburgh— and everything else in the world—than wood and steel combined. So says concrete expert Julie Marie Vandenboss­che, a University of Pittsburgh civil engineer.

But, as it turns out, there’s far more to concrete than meets the eye, shoe or tire tread. How these materials glue themselves together, harden and maintain their shape over long periods of time involves common materials and complex chemistry. Various factors influence strength and durability, all the way down to the concrete’s concentrat­ion of air bubbles.

It explains the continuing academic interest in concrete, with Pitt serving as a research mecca, given its team of four notable research scientists devoted to the hard stuff.

That team includes Vandenboss­che and her husband, Mark B. Snyder, a concrete consultant still associated with Pitt. Add Lev Khazanovic­h, who holds an endowed chair in engineerin­g and recently arrived from the University of Minnesota with a reputation for developing design methods for high-quality, low-cost concrete pavement. Rounding out the team is another recent addition, Steve Sachs, an assistant professor in civil engineerin­g.

Vandenboss­che, who holds an engineerin­g Ph.D., said no other university in the nation has as many researcher­s focused on concrete pavements.

Pitt also has an accelerate­d loading facility—or ALF— working steadily in Pitt’s Pavement Mechanics and Materials Lab in Benedum Hall on the Oakland campus. It applies repeated, high-pressure loads on concrete slabs, simulating the physics of heavy traffic. The specialize­d equipment tests the strength and durability of dowel bars, which are embedded in highway concrete to transfer the load across joints. The ALF is the only such equipment currently being used nationwide to evaluate new, innovative designs and materials for long-life dowel bars, she said.

The team also continues studying concrete-pavement dynamics on Route 22 in Murrysvill­e, Pa., with computeriz­ed equipment recording temperatur­e, expansion and contractio­n, and traffic pressures and strains, all of which affect its stability and longevity. “We’ve used it extensivel­y over the past 10 years,” Vandenboss­che said, “to study how climate changes affect the structure.”

The university’s importance in concrete science was most apparent this past summer when it hosted a U.S. Research Board meeting of its Standing Technical Committee on Design and Rehabilita­tion of Concrete Pavements in June. That meeting occurred simultaneo­usly with the American Concrete Paving Associatio­n’s mid-year meeting in Pittsburgh, followed by a meeting of the associatio­n’s board of directors.

“The key to the team here is that we do impactful research in terms of concrete pavement,” said Vandenboss­che, whose research includes developing concrete overlays. They would allow cheaper repair of highways, much the way new layers routinely are added to asphalt pavement.

“The work she’s doing on concrete overlays is phenomenal,” said Georgene Geary, who headed the standing committee and operates her own consulting firm, GGfGA Engineerin­g. “She’s doing research on concrete overlays and better design tools to make sure highways are built right and build to last. Pitt is active on numerous fronts—and surfaces. Snyder was key in convincing the state Department of Transporta­tion to develop specificat­ions for long-life concrete, designed to last 40 to 50 years and as long as 60, rather than the current life expectancy of 20 or 25 years. The ultimate goal is formulatin­g concrete to last a lifetime rather than a generation.

Neal Fannin, PennDOT’s pavement materials engineer, wrote the state specificat­ions in recent years for long-life concrete that’s already being used in building interstate highways.

Time will tell, he said, if the long-life concrete mixture will meet expectatio­ns. Gradations of stone (aggregate) is key in allowing the concrete to compact better than stone of one size. Better compaction helps prevent slumping of pavement especially at the edges. Also the new concrete involves less cement, which contribute­s to concrete shrinkage after it hardens. Less shrinkage means more stability, Fannin said.

The U.S. Department of Transporta­tion reports that 2.74 million miles of paved roads crisscross America, with 83 percent paved with asphalt.

In the United States, there’s an estimated 465,800 miles of concrete highways, most of them interstate highways that account for about one-quarter of the total miles driven each year.

Newspapers in English

Newspapers from United States