The Guardian (USA)

Crispr gene-editing will change the way Americans eat – here's what's coming

- Karen Weintraub

Soon, soybeans will be bred to yield oil without dangerous trans fats. Lettuce will be grown to handle warmer, drier fields. Wheat to contain less gluten. And pigs bred to resist deadly viruses. Someday, maybe even strawberry plants whose delicate berries can be picked by machine instead of by hand.

Ten years ago, such genetic changes would have been considered science fiction – or so far off into the future of breeding as to be almost unimaginab­le. But gene editing, particular­ly with a tool called Crispr-Cas9, has made it much easier and more efficient to tinker with the genomes of plants and animals. The first Crispr-edited products will begin reaching the market this year, and researcher­s believe it’s only a matter of time before US grocery shelves could be filled with geneedited produce, grains and meat.

The technology will be subject to stringent health and environmen­t review, as well as labeling requiremen­ts in the EU, but not in the US. The US Department of Agricultur­e (USDA) issued a statement last March saying it would not regulate crops whose genetic changes could have been produced with convention­al breeding. The European court of justice, by contrast, ruled last summer that gene-edited crops should be regulated as GMOs.

The scientific challenges have been largely settled – or at least there’s a clear path toward resolving them, according to scientists in the field. But political and social ones remain.

“The questions outstandin­g going forward are regulatory and PR and marketing and commercial launch – the things that matter the most, obviously, outside of the science,” said Rodolphe Barrangou, a distinguis­hed professor at North Carolina State University and editor-in-chief of the Crispr Journal.

Crispr technology is still in its infancy. Short for “clustered regulatory interspers­ed short palindromi­c repeats”, Crispr was first used in cells with a nucleus only six years ago. It takes advantage of the natural immune system of bacteria to make precise cuts in the target genome. This can be used to delete a few letters, turning a gene off, or dialing it up or down, or it can force a change in the genetic alphabet, giving the plant or animal new functions. It’s not a perfect process, but it’s much more precise and easier to work with than previous gene editing techniques, according to scientists. Researcher­s say many of these new functions will be copied from nature, making, say, a hothouse tomato as disease-resistant as a wild one without sacrificin­g flavor. But others could be entirely new – and likely to raise more concern.

Unlike genetic modificati­on, gene editing doesn’t require transgenic­s, the movement of genes from one species to another. So, if there are dangers to GMO foods – which some, but far from all scientists believe – gene editing that simply removes genes or copies sequences from similar species is likely to be safer.

Essentiall­y, gene editing accomplish­es what convention­al breeding would, just more efficientl­y and more easily, according to Zachary Lippman, an expert in the genetics of flowering plants at the Cold Spring Harbor Laboratory on Long Island, New York. “This is a tool that creates what nature could create on its own just never got around [to] or had the opportunit­y to create,” he said.

Lippman said Crispr is an incredibly useful tool in research, allowing him to ask new questions of the tomato plants he breeds, by fast-forwarding the research process. “The amount of genetics that we’re currently able to do has at least quintupled in the last three years,” he said. It also allows breeders, who have maximized their crops for current conditions, to now ready their crops for the challenges of climate change, said Lippman, who was recently named an investigat­or with the Howard Hughes medical institute.

It could also upend agricultur­e, boosting the health, shelf life, offseason availabili­ty and transporta­bility of fruits and vegetables, said Haven Baker, chief business officer of Pairwise, a North Carolina-based startup that uses Crispr technology both to edit large-scale crops like corn and soy, and specialty crops like berries and snackable vegetables. Baker and the company’s CEO, Tom Adams, said they would like to see berry plants modified to make them easier to pick by drone or other machine rather than by hand, bringing down labor costs and avoiding arduous work. “These are the type of questions we’re thinking about – to really use Crispr technology not to maybe solve one disease problem, but to really solve the entire industry’s problems,” Baker said. “We see this as the beginning of a 25-year cycle of innovation that will greatly improve agricultur­e around the world.”

Although most Crispr gene editing is still taking place in labs and research greenhouse­s, the future he envisions isn’t far off. The first gene-edited products are expected to reach the market as soon as nextyear: a soybean oil that has less saturated fat and no dangerous trans fats, from a Minnesotab­ased company called Calyxt, and an improved variety of waxy corn – used as a thickener and stabilizer in many food products – from Corteva Agriscienc­e, the agricultur­e division of DowDuPont.

But the public and government­s around the world are still unsure how to deal with gene-edited crops and livestock.

Jennifer Kuzma, co-director of the Genetic Engineerin­g and Society Center at North Carolina State University, said US consumers are willing to pay 20% more to avoid GMO foods, and nearly half of the public reports actively avoiding geneticall­y modified ingredient­s and food. There hasn’t been much polling data on consumer views of gene-edited foods, because they are still so new. People may be slightly less concerned with gene edits than with swapping in genes from distant species, she said, but generally, “I think people are bothered by that human-controlled laboratory step”.

She also said that she sees industry making many of the same public relations mistakes with gene editing that they made with GMOs. The industry is fighting labeling and regulation and not being as transparen­t as it should be about the challenges and shortcomin­gs of gene editing, she said and wrote in a recent article.

Public reaction may ultimately drive government regulation – which is not yet a settled issue. While the USDA has said it would not regulate the technology, the US Food and Drug Administra­tion (FDA) has suggested it might treat all intentiona­lly edited products as drugs, which would mean heavy oversight.

If strong government regulation­s are imposed, gene editing will be finished before it really begins, said Alison Van Eenennaam, a cooperativ­e extension specialist at the University of California, Davis. “We can stop having this discussion because we’ll never use it. It’s just done,” she said. Van Eenennaam said she was frustrated by campaigns that unnecessar­ily derailed a lot of the potential of GMOs, and she sees the same thing happening again with gene editing. “It’s much easier to frighten someone about something,” she said.

Others think government regulation is essential for reining in bad actors and keeping food safe.

Jaydee Hanson, a senior policy analyst with the Center for Food Safety, a Washington DC-based advocacy group, wants companies to publicly release a complete genetic sequence of their Crispr products, so people can look for unintentio­nal mutations and other problems. Now, for instance, when a potato turns green, that’s a sign it is releasing toxins and shouldn’t be eaten, he said. But if the green gene were accidental­ly turned off, potatoes could release toxins without the warning.

Industry and some academics say these off-target effects can be managed. They happen all the time in regular breeding and always have, said Bernice Slutsky, senior vice-president of the American Seed Trade Associatio­n, a trade group. Any plant or animal is already the product of mutations from hundreds of millions of years of evolution, Lippman said.

Hanson said he was also worried that with Crispr, as with many technologi­cal advances, most of the benefits will go to larger, more industrial­ized farms.

Gene-edited seeds can be patented, meaning the farmer will have to pay more to use them, which boosts the cost to farmers as well as the sellers, Hanson said.

Even changes that seem to benefit animal welfare are really about profit, Hanson said. Editing cattle genes to prevent horn growth and the need to de-horn the animals is really“about making it cheaper to have 140,000-head dairies, because it’s one more step you don’t have to take”, he said. “If you wanted to raise more humane animals, you’d raise animals like the dairy I used to work at when I was a kid – you’d have 40 animals instead of 140,000 and you’d be able to know the name of every cow.”

On the flip side, Hanson acknowledg­es that gene editing could potentiall­y be used to cut down on the need for pesticides, which put farmers and farm workers at risk. And Van Eenennaam worries that if rich countries shut down gene editing, poor countries that really need increased productivi­ty, fewer pesticides and healthier foods won’t be able to benefit.

 ?? Photograph: Westend61/Getty Images/Westend61 ?? The first Crispr-edited products will reach the US market this year, and researcher­s believe it’s only a matter of time before US grocery shelves could be filled with gene-edited produce, grains and meat
Photograph: Westend61/Getty Images/Westend61 The first Crispr-edited products will reach the US market this year, and researcher­s believe it’s only a matter of time before US grocery shelves could be filled with gene-edited produce, grains and meat

Newspapers in English

Newspapers from United States