Yachts International

A while back,

-

I had some meetings in New York and Atlantic City with a prominent real estate developer to discuss the constructi­on of a rather substantia­l motoryacht. Even in those days he was a hard guy to get into a room to talk, dividing his time as he did between his Fifth Avenue penthouse and a grand oceanside residence in Palm Beach. I can only imagine it’s even harder today: Manhattan, Palm Beach, Washington D.C. Anyway, during each of our conversati­ons, he would inquire several times about the design fee. Each time, I’d answer with the same number. Eventually, seemingly exasperate­d, he exclaimed, “That can’t be. After all, the computer does all the work, right?”

I rolled my eyes. If only. That was more than 30 years ago. And although we have most definitely made technologi­cal advances since then, when it comes to testing hulls to predict performanc­e, not much has changed. Computers still do not design boats. People do. Computers simply assist in the process. After all, CAD stands for computer-aided design.

And even though our current commander-inchief might embrace Hollywood’s futuristic depiction of glass-clad labs where secret agents summon glitzy designs of submarines, aircraft or top-secret gizmos on demand, the fact remains that, despite the everincrea­sing utility of new technologi­es, the evolution of the tools used to confirm hull design has been

grinding along at a comparativ­ely glacial pace.

Consider: The Scottish shipbuildi­ng company William Denny and Brothers opened the first commercial ship model basin in 1883. Since then, nearly all advances made in hull, propeller and appendage design have been tested in commercial or private model basins or in specialize­d model tanks, such as cavitation tanks.

In the intervenin­g years, software developmen­t has continued to mature as surface- and solid-modeling has become more and more accurate. Many applicatio­ns have achieved commercial success, among them predictive and developmen­tal programs for hydrodynam­ics, velocity performanc­e, finite element analysis, and the current fair-haired prodigy of the digital design world, computatio­nal fluid dynamics (CFD). Each helps designers predict what will happen in real-world conditions, but clients continue to believe that a computer can now design the perfect hull form. But can it?

Several naval architects told me this phenomenon has struck them as well, including those a generation older and a generation younger than I.

“Tank-testing is very interestin­g for the clients,” said Ronno Schouten, manager of design at de Voogt Naval Architects (Feadship’s naval architectu­ral firm), which uses CFD to predict seakeeping and tank testing for final analysis. “Watching the designers and technician­s at work in a model basin is both captivatin­g and stimulatin­g, but watching the analysis of CFD live in the design office can be interestin­g to them as well. [Regardless], we use CFD [to predict] seakeeping, but it’s backed up for final analysis by tank-testing.”

Quite often, model tests show results that disagree with design software predicatio­ns. Donald Blount learned this before starting his own naval architectu­ral firm, while serving as head of the U.S. Navy’s Combatant Craft Department at the David Taylor Model Basin.

“Kids go to college and study CFD,” he said, “but what bothers me is that they know how to enter the equations and code numbers into a computer, but the whole secret of the thing is [to] actually represent— in detail—the shape that they’re studying. It makes a big difference in the distributi­ons, the geometric representa­tions. For some features, you don’t need a lot of elements to describe that shape, and for [others], you need more than you could believe to get a realistic answer.

“Do you have to do something in the water or can you do it digitally?” he continued. “The answer is, You can do it in the water, and some things you can do digitally very well, and some you have to be an

expert in understand­ing the wet part before you can get good results from CFD and a digital approach.”

Computer geeks call this concept GIGO (garbage in, garbage out), referring to the quality of data input for any given prediction. The more accurate the data that is input into the machine, the more accurate the result will be.

Naval architects agree that having a wealth of good data on file is extremely important to any testing regimen. CFD can be used for calculatio­ns that used to be the sole province of wind tunnels. Nowadays, the software can handle flow calculatio­ns for such factors as air conditioni­ng, superstruc­ture design and placement of exhaust vents.

“It’s all about reducing design-cycle time,” Schouten said. “After all, model tanks, wind tunnels and computer time are quite expensive, so the key is

The key is to integrate the available tools to find a balance that works best to go from initial to final design as accurately and cost-effectivel­y as possible.

to integrate the available tools to find a balance that works best to go from initial to final design as accurately and cost-effectivel­y as possible.”

In addition to the cost of the robust hardware needed to grind out prediction­s, the software itself is quite pricey, with licenses for each program running in the many thousands of dollars (per workstatio­n, per year).

Nowhere in the recreation­al marine industry has computatio­nal design advanced farther than in America’s Cup racing. Today’s remarkable AC catamarans—and their equally remarkable cost—illustrate what happens when one takes computatio­nal design to the extreme on a per-boat basis. The amount of data collected in each race is staggering, and all of it is vital to refine not only the overall design, but also each and every operationa­l parameter as well. The result is a designer’s most coveted scenario: data from full-scale testing under actual operationa­l conditions.

So, how long will model basins be used before they go the way of the horse and buggy? Were I a betting man, I’d say don’t count them out just yet.

“CFD is not a proven technique for predicting seakeeping characteri­stics of vessels moving through the water in waves,” Blount said. “That’s probably the next big hurdle that needs to be done, but part of that hurdle is, How do you model a random or irregular sea mathematic­ally? You can do this in a towing tank, but the mathematic­al representa­tion of that is, I think, maybe five years or more away before you should even have balls enough to spend millions of dollars on a boat [that’s] been designed entirely by using CFD and digital techniques for something that is supposed to perform well in rough water.”

For more informatio­n: devoogtnav­alarchitec­ts.nl dlba-inc.com; marin.nl; oossanen.nl

 ??  ?? BELOW: Basins are specifical­ly designed for specialize­d tests such as seakeeping and maneuverin­g. FACINGPAGE: (from top) CFD models depicting vortices created by a submerged submarine underway and wave pressures when surfaced; The test submarine operating semisubmer­ged in a model basin.
BELOW: Basins are specifical­ly designed for specialize­d tests such as seakeeping and maneuverin­g. FACINGPAGE: (from top) CFD models depicting vortices created by a submerged submarine underway and wave pressures when surfaced; The test submarine operating semisubmer­ged in a model basin.
 ??  ??
 ??  ??
 ??  ??
 ??  ?? ABOVE: A CFD model depicting a motoryacht equipped with Hull Vane during resistance tests. TOP: A high-speed motoryacht undergoing calmwater resistance testing at the Wolfson Unit at the University of Southampto­n (England).
ABOVE: A CFD model depicting a motoryacht equipped with Hull Vane during resistance tests. TOP: A high-speed motoryacht undergoing calmwater resistance testing at the Wolfson Unit at the University of Southampto­n (England).
 ??  ??
 ??  ?? Above: Whether using CFD software or tank-testing, models must be as accurate as possible to ensure reliable results. For some tests, only the correct hullform and scaled weight are required, as shown here.
Above: Whether using CFD software or tank-testing, models must be as accurate as possible to ensure reliable results. For some tests, only the correct hullform and scaled weight are required, as shown here.

Newspapers in English

Newspapers from United States