Cosmos

HOW TO BUILD A SPACESUIT

Few uniforms are as recognisab­le and inspiring as those worn for space travel. But as Deborah Devis discovers, the evolution of the spacesuit has taken decades of small, painstakin­g steps.

-

DEBORAH DEVIS rips open the Velcro on spacesuits for an insight into what’s worn at extreme altitudes, and why.

Spacesuits need to keep people alive in the harshest environmen­ts humans have ventured. Each of their parts must function together to make a mobile system to sustain life. Perhaps it helps that they also look really cool. We often think of Neil Armstrong’s bulky moonwalk outfit as “the” one, but there is no single, generic spacesuit. It isn’t even a case of one suit evolving; the sleek Spacex suits revealed recently serve an entirely different purpose to Armstrong’s.

But here’s the rub with spacesuit history and design: you just can’t have one without the other.

High flyers

Before spacefligh­t, pioneering jet pilots wore protoversi­ons of today’s suits to help overcome pressure and low oxygen problems at extreme altitudes. Made of rubber covered by a rigid fabric, these suits inflated like a bladder to keep a constant pressure inside the suit if the pressurise­d cabin failed. A hose fed oxygen in from pressurise­d cylinders.

For NASA’S Project Mercury program (1958–63), this same principle was used, but extra aluminium-coated nylon layers, laced boots, gloves and a new helmet were added.

“The big concerns were thermal and radiation,” says Les Padilla, hardware manager for NASA’S Extravehic­ular Mobility Unit (EMU). “You’ll see aluminised material on the suit early on, because they really wanted to make sure the guys were protected, so they went all out. As we got more data, we figured out what was needed.” Collective­ly, the suit and helmet allowed for oxygen to enter the system through the “umbilical cord” at the waist and exit through a hose on the right of the helmet. This meant that the astronaut no longer needed a big rubber plug strapped to their face, and the oxygen provided extra cooling. Boots served a simple purpose – as comfortabl­e shoes.

An external fan unit kept the suit cool. The suits were so rigid that it was difficult to move, but flexibilit­y at that stage was a low priority.

NASA’S Project Gemini (1965–66) brought another challenge: spacewalks. Suits were upgraded with an inner rubber bladder to seal in pressure, and an extended umbilical cord to feed in air. They were hot and extremely stiff; astronauts finished space walks exhausted. But everything was a first.

The icon

Project Apollo (1961–73) used suits similar to Project Gemini, but with an extra caveat: they needed to be Moon-proof. And so EMU suits were born.

“The suit itself is an engineerin­g marvel,” says Malcolm Collum, chief conservato­r for the Smithsonia­n’s National Air and Space Museum. “Every single detail has a specific function.” Boots were no longer ordinary. New overshoes had stronger, silicone soles woven with stainless steel uppers. Extra layers of thermal protection and a felt bottom protected astronauts’ feet from jagged lunar rocks.

It can also get extremely hot and bright on the Moon’s surface – lack of atmosphere will do that. “The suit’s gold visor is like very fancy sunglasses,” says Padilla. “It blocks harmful UV rays and other rays that come from the Sun. The outer layer of the suit is white because it reflects heat. If it were black it would get a lot hotter quicker.”

Armstrong himself wrote to “the EMU Gang” who designed the suit: “It was tough, reliable and almost cuddly. To all of you who made it all that it was, I send a quarter century’s worth of thanks and congratula­tions.”

Pumpkins in space

Before you think about looking good in space, you need to actually get into space.

“Now there are intravehic­ular activity (IVA) suits, and they’re worn during launch, re-entry, and docking,” says James Waldie, co-founder and CEO of Cape Bionics and adjunct professor at Royal Melbourne Institute of Technology (RMIT).

By the time of the fifth space shuttle mission of Columbia in 1982, pressure suits were abandoned. After all, no American had died from not wearing one. Columbia’s crew wore blue flight suits with an oxygen helmet that looked a bit like a clam – much more comfortabl­e.

But in 1986, the Challenger space shuttle broke apart just 73 seconds after launch. The subsequent inquiry concluded that while the exact cause of death was unknown, there was evidence that some of the crew survived the initial explosion – it was unclear whether they died on impact with the ocean or through loss of cabin pressure. If they’d been wearing old-style suits that inflated upon cabin-pressure loss, some of the crew may have survived. Launch and re-entry suits became standard, causing spacesuit evolution to split into the interdepen­dent paths of IVA and extravehic­ular activity – EVA – suits.

The Discovery shuttle mission in 1988 was seen as a way to reclaim the space-exploring spirit after the loss of Challenger. Safety was paramount. The suits were made of Nomax, a synthetic material also used for body armour fabrics and marine hull reinforcem­ents. Its fibres, called aramids, are made of aromatic (forming a carbon ring) chain molecules that match the direction of the fibre, making strong chemical bonds that bump up the strength of the fibres – they won’t melt until they reach temperatur­es above 500°C.

To the delight of survival enthusiast­s, crews were also equipped with a knife, locator beacon and signalling kit filled with lights, a whistle, a mirror and a life-raft. The latest suits are the Orion Crew Survival

“It was tough, reliable and almost cuddly. To all of you who made it all that it was, I send a quarter century’s worth of thanks and congratula­tions.”

System (OCSS), built by NASA, that will be used for the Artemis program. They can keep an astronaut alive in a depressuri­sed cabin for up to six days.

They’re fire-resistant, and include thermal underwear cooled with embedded tubes of liquid.

While NASA hasn’t released the materials used for these suits, they claim the helmets are made of a lighter, tougher and noise-cancelling material. We do know that the OCSS (nicknamed the Pumpkin suit, for its bright orange colour) comes with a reengineer­ed zipper to help the astronaut slip in easily in an emergency.

The Russian Sokol (meaning “falcon”) suits are similar to these Pumpkin suits but are predominan­tly white with blue trims. The Sokols are worn onboard Soyuz, a shuttle craft that has logged 140 flights since the 1960s. The original rubber pressure layer has been upgraded to polycaprol­actam, which is lighter than the rubber – the Sokol weighs only 10kg. The Pumpkin is a hefty 42kg – mostly due to its 29kg parachute and survival kit.

Spacex: the age of the tech elite

The suits worn aboard Spacex’s Dragon were the first to be designed with aesthetics in mind. In fact, these “Starman” suits were designed partly by Hollywood costumier Jose Fernandez, who apparently didn’t realise at first that he was designing for actual spacefligh­t – he thought it was for a movie.

“I then realised it’s an actual space program,” Fernandez said. “They had two weeks to present the suit to Elon Musk. I told them I couldn’t do a full suit in two weeks but I may be able to do a helmet.” At just 9kg, it is sleek, white and made from Nomex and Kevlar – another aramid-based synthetic material. A connection point on the suit’s thigh allows easy input of both air and power from the seat.

Like the Pumpkins, Starmans are tailored individual­ly to astronauts for optimal comfort, complete with 3D printed helmets. The suit’s gloves are touch-screen compatible to work with the capsule’s dashboard. “It’s not just a piece of hardware, it’s a very personal thing. It’s Bob’s suit. It’s Doug’s suit,” said Chris Trigg, Spacex’s spacesuits and crew equipment manager. “Elon Musk wanted it to look stylish,” Fernandez said. “It had to be practical but also needed to look great. You look heroic in it.”

Space-age leisurewea­r

Getting to and from space is one thing, but staying up there for any length of time brings other challenges. While it might look like the crew on the Internatio­nal Space Station (ISS) wears comfy tracksuits, the reality is rather more sophistica­ted.

As creatures of Earth, our bodies are adapted to its gravity. This means our health is affected in the absence of gravity, too. Lack of gravity causes astronauts to lose body mass, so they need to wear a gravity-loading suit.

“Those suits are designed to load the skeletal system the same way that our body weight loads the bones here on Earth.” says Waldie. “Astronauts lose up to 2% bone mass per month in space, because they’re just floating around, and bones and muscles atrophy as they adapt to this new environmen­t.

“We have to consider each astronaut’s body size and the weight of the limbs, so we can calculate the normal loading regime on Earth. And then we have to consider their size at every few millimetre­s of height in order to design a suit that can load them vertically, but have the appropriat­e horizontal tension to hold the suit comfortabl­y in place and transfer the loads.”

This is a task made more complex because calculatio­ns for the gravity loading of an astronaut taken on Earth will be different to their body shape in space.

“In space, the fluids redistribu­te equally over the height of the body,” says Waldie. “You get thinner legs and a puffy face. Because the leg size decreases, we need to accommodat­e that into the suit design.”

Spacewalki­ng

EVA suits are arguably the most complicate­d suits to design because they’re solely responsibl­e for the survival of astronauts during spacewalks. “Their purpose is like a miniature aircraft, but they must allow mobility, flexibilit­y and manoeuvrab­ility so that a crew member can function when they’re working,” says Padilla.

Space has a different pressure to the Earth’s surface. On the ground, the internal pressure of our bodies matches the external pressure of the air, creating a balance. In space, there’s almost no pressure; the air

inside our bodies will dangerousl­y expand as it tries to fill that vacuum, while the boiling point of liquids is so reduced that blood can literally boil. To overcome this, the EVA suits need to be pressurise­d.

But, as Waldie explains, once suits are inflated they can become rigid, like a car tyre. “And the more you inflate them, the stiffer they become. So it is a big challenge trying to design gas-pressurise­d suits which offer good mobility while still being light and robust.”

Our bodies also change in volume as we move. If we flex a muscle to move an arm, the volume of our body increases and takes up more space. That air compresses the astronaut, which makes movement in spacewalks very tiring.

“It’s fatiguing,” says Padilla. “You’ve got pressure on your hands, your body. To move, you’ve got 1.95 kilograms of pressure over all of your body that you’re working against.”

The EVA suits are designed for different outside tasks, as it would be impractica­l to put every tool on a single suit. “EVA suits come in different sizes and then the components can be tuned from there,” says Waldie.

The dexterity and fine motor skills needed to hold and operate tools to maintain or repair the spacecraft from the outside are essential, making the glove a key component. “The gloves, in particular, go through a very rigorous tuning. The finger lengths must be adjusted to give the astronaut maximum mobility and tactility,” says Waldie. “Glove design is very difficult because the hand is perhaps the most complex, jointed geometry of the body.”

Not only is the dexterity integral, it is also downright dangerous for gloves to fit poorly. “I worked at NASA on a study which was looking at injuries caused to astronauts through users using EVA gloves, principall­y looking at nail delaminati­ons – having nails die and fall off through training and flight use with the gloves,” Waldie explains. “The problem is so bad that one astronaut had their nails removed before flight.”

This is because fingers change in length and size as they bend. The glove needs to be built around a model of the hand in an ideal pose where the finger length is perfect, but when the astronaut opens and closes their fingers, their position in the glove changes.

The fingertips can go from losing contact with the glove, making work very difficult, to the nail rubbing against the fabric and being essentiall­y “filed off”.

Gloves must be of a soft material to aid flexibilit­y, but the fibreglass body of NASA EMUS and polycarbon­ate helmets must protect the astronaut from space debris.

The front of the helmet is a clear plastic that has wide-field vision, as neck movement is difficult. It also has a purge valve to remove carbon dioxide, which becomes toxic at high levels. The helmet even comes with a hard straw linked to a drink pack, because hydration is vital. And no worries if you need to be out there for a few hours without a toilet – the suit comes equipped with a space nappy.

“We need to be able to turn bolts. We need to be able to pull out large batteries and replace them. So they need suits that offer dexterity and yet protection.”

What about the women?

The first all-female spacewalk, completed in 2019, highlighte­d a problem that had existed for the 36 years since Sally Ride became the first American woman in space. Put bluntly, spacesuits were designed for men.

The walk was originally supposed to happen in March 2019, but astronauts Christina Koch and Anne Mcclain realised they didn’t have the right suits.

Mcclain noticed that the medium EVA “shirt” fit her better than the large, but there weren’t enough on board for both her and Koch. Since it was easier to switch the astronaut than the suit, she was substitute­d out for a male colleague.

It is not an uncommon outcome.

“There are some physical reasons that make it harder sometimes for women to do spacewalks,” explained Ken Bowersox, the acting associate administra­tor for human exploratio­n at NASA. “It’s a little bit like playing in the NBA. You know, I’m too short to play in the NBA, and sometimes physical characteri­stics make a difference in certain activities.

“And spacewalks are one of those areas where just how your body is built in shape, it makes a difference in how well you can work a suit.”

Is it, Ken? After all, suits are built, not bodies. If we can build spacecraft to work for people and not require people to be “built” for spacecraft, can’t we do the same for suits? “These repairs and tasks can be performed by anyone in the astronaut corps, that’s for sure,” said Dava Newman, the former NASA deputy administra­tor who’s working on a new spacesuit design at MIT. “That is, if they’re in the right suit.”

This might be addressed for Artemis as NASA’S next-generation XEMU suits accommodat­e a range of bodies from the “first percentile female to the 99th percentile male”, according to Kristine Davis, an advanced spacesuit engineer at NASA.

“We want every person who dreams of going into space to be able to say to themselves, that yes, they have that opportunit­y,” added Jim Bridenstin­e, NASA administra­tor.

Looking to the future

The next generation of spacesuits will be focused on walking on celestial bodies.

“Designing suits that are functional, but still allow mobility, is a huge challenge,” says Waldie. “Particular­ly as we look towards Moon and Mars suits, which require light and flexible boots.” Both Mars and the Moon have a lower gravity than Earth, but more gravity than space, so explorers will require suits that provide a precise level of gravity-loading.

Scientists have good informatio­n about gravity on Earth and gravity in space, but not much for the levels of gravity in between.

“It’s going to be important to consider when we go to the Moon for long periods,” says Waldie. “We don’t know if Martian gravity is enough to keep someone healthy for a two-and-a-half-year mission.” Landed missions need astronauts who can “do more than just fly around and enjoy the scenery”, says Padilla. “We need to be able to turn bolts. We need to be able to pull out large batteries and replace them. And so they need suits that offer dexterity and yet protection from the very harsh space environmen­t.”

The process will probably resemble the IVA evolution. One small step, and then another small step, and maybe a medium step here and there.

But their core function is not about inspiratio­n, fashion or fancy. They are the end product of decades of developmen­t and thousands of people contributi­ng to one single mission: keep the astronaut alive.

DEBORAH DEVIS is a journalist at Cosmos, writing regularly on cosmosmaga­zine.com. This is her first magazine feature.

 ??  ?? Liquid cooling and ventilatio­n garment Helmet with camera and lights Arm assembly Modified miniworkst­ation system
Extravehic­ular Mobility Unit
Liquid cooling and ventilatio­n garment Helmet with camera and lights Arm assembly Modified miniworkst­ation system Extravehic­ular Mobility Unit
 ??  ?? Communicat­ion carrier assembly Hard upper torso Boot Primary life support system Glove Secondary oxygen pack Disposable insuit drink bag
Communicat­ion carrier assembly Hard upper torso Boot Primary life support system Glove Secondary oxygen pack Disposable insuit drink bag
 ??  ??
 ??  ?? Neil Armstrong’s Apollo 11 suit, model A7L, serial number 056, comprises 21 layers of synthetics, neoprene rubber and metallised polyester films.
Neil Armstrong’s Apollo 11 suit, model A7L, serial number 056, comprises 21 layers of synthetics, neoprene rubber and metallised polyester films.
 ??  ?? Astronauts James Irwin (left) and John Bull demonstrat­e the Apollo A-6L spacesuit – Bull’s suit incorporat­es the outer white thermal micrometeo­roid protective layer (right), evolving the IVA to an EVA. The 1960 Mercury spacesuit (opposite, left) was a customfitt­ed, modified version of a military jet pressure suit, lined with neoprene-coated nylon and an outer shell of outer aluminised nylon. Even with special sewing it was difficult for a pilot to bend arms or legs. Russia’s Sokol-kv-2 suits (opposite, centre), were developed after three unsuited cosmonauts asphyxiate­d on the 1971 Soyuz 11 mission. The suit is made for Soyuz seats, which prompts users into a foetal position – hence the “cosmonaut stoop” when they’re vertical. It’s analogous to the US “pumpkin suit” (opposite, right), which was developed after the 1986
Columbia shuttle disaster.
Astronauts James Irwin (left) and John Bull demonstrat­e the Apollo A-6L spacesuit – Bull’s suit incorporat­es the outer white thermal micrometeo­roid protective layer (right), evolving the IVA to an EVA. The 1960 Mercury spacesuit (opposite, left) was a customfitt­ed, modified version of a military jet pressure suit, lined with neoprene-coated nylon and an outer shell of outer aluminised nylon. Even with special sewing it was difficult for a pilot to bend arms or legs. Russia’s Sokol-kv-2 suits (opposite, centre), were developed after three unsuited cosmonauts asphyxiate­d on the 1971 Soyuz 11 mission. The suit is made for Soyuz seats, which prompts users into a foetal position – hence the “cosmonaut stoop” when they’re vertical. It’s analogous to the US “pumpkin suit” (opposite, right), which was developed after the 1986 Columbia shuttle disaster.
 ??  ?? NASA flight engineer Anne Mcclain (below) is helped into her Russian Sokol suit as she prepares for a Soyuz launch to the Internatio­nal Space Station, in 2018.
NASA flight engineer Anne Mcclain (below) is helped into her Russian Sokol suit as she prepares for a Soyuz launch to the Internatio­nal Space Station, in 2018.
 ??  ??
 ??  ?? Spacex’s Starman IVA suits (above, opposite) come with 3D-printed helmets and touchscree­n compatible gloves – but only in one gender. The XEMU suits are upgrades of the Apollo era EVA suits designed for returning to the Moon and planning for Mars. Improvemen­ts include better mobility, hiking-style boots, enhanced communicat­ion and a modular system (see torso variations above) for different gravity, temperatur­e or expedition requiremen­ts.
Spacex’s Starman IVA suits (above, opposite) come with 3D-printed helmets and touchscree­n compatible gloves – but only in one gender. The XEMU suits are upgrades of the Apollo era EVA suits designed for returning to the Moon and planning for Mars. Improvemen­ts include better mobility, hiking-style boots, enhanced communicat­ion and a modular system (see torso variations above) for different gravity, temperatur­e or expedition requiremen­ts.

Newspapers in English

Newspapers from Australia