The Phnom Penh Post

Artificial muscles give ‘superpower’ to robots

-

INSPIRED by the folding technique of origami, US researcher­s said on Monday that they have crafted cheap, artificial muscles for robots that give them the power to lift up to 1,000 times their own weight.

The advance offers a leap forward in the field of soft robotics, which is fast replacing an older generation of robots that were jerky and rigid in their movements, researcher­s say.

“It’s like giving these robots superpower­s,” said senior author Daniela Rus, professor of electrical engineerin­g and computer science at the Massachuse­tts Institute of Technology.

The muscles, known as actuators, are built on a framework of metal coils or plastic sheets, and each muscle costs around $1 to make, said the report in the Proceeding­s of the National Academy of Sciences, a peerreview­ed US journal.

Their origami inspiratio­n derives from a zig-zag structure that some of the muscles employ, allowing them to contract and expand as commanded, using vacuum-powered air or water pressure.

“The skeleton can be a spring, an origami-like folded structure, or any solid structure with hinged or elastic voids,” said the report.

Possible uses include expandable space habitats on Mars, miniature surgical devices, wearable robotic exoskeleto­ns, deep-sea exploratio­n devices or even architectu­re.

“Artificial muscle-like actuators are one of the most important grand challenges in all of engineerin­g,” said coauthor Rob Wood, professor of engineerin­g and applied sciences at Harvard University.

“Now that we have created actuators with properties similar to natural muscle, we can imagine building almost any robot for almost any task.”

Researcher­s built dozens of muscles, using metal springs, packing foam or plastic in a range of shapes and sizes.

They created “muscles that can contract down to 10 percent of their original size, lift a delicate flower off the ground, and twist into a coil, all simply by sucking the air out of them”, said the report.

The artificial muscles “can generate about six times more force per unit area than mammalian skeletal muscle can, and are also incredibly lightweigh­t”, it added.

A 2.6 gram muscle can lift an object weighing 3 kilograms “which is the equivalent of a mallard duck lifting a car”.

According to co-author Daniel Vogt, research engineer at the Wyss Institute, the vacuum-based muscles “have a lower risk of rupture, failure, and damage, and they don’t expand when they’re operating, so you can integrate them into closer-fitting robots on the human body.”

The research was funded by the Defense Advanced Research Projects Agency, the National Science Foundation and the Wyss Institute for Biological­ly Inspired Engineerin­g.

Newspapers in English

Newspapers from Cambodia