Penticton Herald

Creating homes to withstand tornadoes

Researcher­s investigat­e making buildings stronger to endure devastatin­g winds

-

New research from the UBC Okanagan’s School of Engineerin­g and Western University provides a roadmap to safer building designs in tornado-prone areas.

With the exception of nuclear facilities, current building codes across North America do not specifical­ly address tornado risk. This is due to a variety of factors including the low probabilit­y of occurrence and costs, explains Matiyas Bezabeh, a graduate student at UBC Okanagan.

But tornados do happen—even in Canada. On September 25, six tornados with wind speeds between 135 and 175 kilometres per hour touched down in the Ottawa-Gatineau region, causing $300 million dollars worth of damage. And in 2011, a tornado in Goderich, Ontario caused about $110 million in damages according to insurance estimates.

America’s Wind Hazard Reduction Coalition also states that tornadoes claim nearly 100 lives each year in the United States and account for nearly a billion dollars in property damage.

“The potential damage of tornadoes is extensive, so as structural wind researcher­s we have been turning our attention towards tornado-structure interactio­ns and tornadoind­uced wind loads on civil structures in recent years,” explains Bezabeh.

In collaborat­ion with Girma Bitsuamlak, research director at the WindEEE Research Institute at Western University and UBC Okanagan Engineerin­g Professor Solomon Tesfamaria­m, Bezabeh investigat­ed the impact of tornado-like winds on structures. His research focuses on mass-timber buildings—those built with cross-laminated timber for walls and floors and glued-laminated products for beams and columns.

In Canada and the United States, the intensity of tornadoes is measured using an Enhanced Fujita scale (EF-Scale) based on the damage caused.

According to research, buildings designed to a 1-in-50-year wind load can withstand weaker tornadoes with a low EF-Scale—wind speeds less than 175 kilometers per hour— but do not fare as well against tornadoes with higher intensitie­s.

“Increasing the lateral stiffness by adding core walls and bracings could make masstimber buildings able to withstand higher intensity wind loads,” says Bezabeh. “Furthermor­e, increasing the dead weight of buildings and incorporat­ing tension piles (rock anchors) as part of the foundation system can also lower the risk of collapse.”

While his research was specific to masstimber frames, Bezebeh points out his results address potential mitigating factors for all types of buildings.

Bezabeh’s research was recently published in the Journal of Wind Engineerin­g and Industrial Aerodynami­cs.

He is already looking ahead to the next stage of his research where additional experiment­al tornado tests will be conducted on an assortment of low-, mid- and high-rise mass-timber building models to develop a performanc­e-based tornadic design framework.

 ??  ??
 ??  ?? Matiyas Bezabeh watches the effect of extreme wind loads on tall timber building models during a simulation at the Wind Engineerin­g, Energy and Environmen­t Research Institute.
Matiyas Bezabeh watches the effect of extreme wind loads on tall timber building models during a simulation at the Wind Engineerin­g, Energy and Environmen­t Research Institute.

Newspapers in English

Newspapers from Canada