Sherbrooke Record

Mercury decline in seabirds due to diet, not emissions controls

- By Kyle Elliott, Canada Research Chair in Arctic Ecology, Mcgill University and Mehrnoosh Azodi, Research Assistant, Mcgill University

For 47 years, biologists have plucked eggs from seabird nests along the British Columbia coast. Many of the eggs were collected from remote rocky islands surrounded by some of the world's roughest seas.

In all, they collected 537 eggs from six species, including ancient murrelets, rhinoceros auklets and doublecres­ted cormorants. Now these eggs are revealing new informatio­n about the way mercury finds its way into the ecosystem.

The eggs of top predators, like these seabirds, are important for researcher­s who study chemical pollutants. We use these eggs to understand, for example, how mercury levels in seabirds have changed over time. This data helps us understand whether control measures, including internatio­nal agreements, are reducing mercury levels in the global environmen­t.

Human activities, especially the burning of coal, release mercury into the atmosphere. Mercury levels in the Pacific Ocean are now three to five times higher than they were before the industrial revolution. Our activities have released 1.5 million tonnes of mercury into the air, land and water bodies since 1850.

For wildlife _ and humans _ mercury is a neurotoxin. High levels in the food chain can have negative impacts on the reproducti­ve health of seabirds, marine mammals and other carnivores that feed on seafood. For example, seabirds with heavy mercury loads are less likely to breed. Mercury also slows down the healthy growth of chicks.

Bacteria plays a fundamenta­l role

Researcher­s had thought that the seabirds that feed on large predatory fish would have the highest levels of mercury because large fish, which are higher up the food chain, accumulate more mercury in their bodies than the small fish and invertebra­tes that occupy the bottom of the food chain.

But later studies contradict­ed these expectatio­ns. By studying mercury levels in the eggs of seabirds over many years, researcher­s found seabirds that fed on invertebra­tes and small fish had higher mercury levels than the seabirds that ate large fish.

Our research explained why the highest mercury levels occurred in species that ate small fish. We measured mercury levels and a collection of dietary tracers called stable isotopes in the seabird eggs. We studied nitrogen, carbon and sulphur isotopes because these chemicals tell us about the type of food the birds were eating.

We found that the seabird eggs with high mercury levels also had higher sulphate levels. It meant that these birds were eating small fish from areas that were also favoured by a specific type of bacteria.

These bacteria, called sulphate-reducing bacteria, convert mercury to methylmerc­ury, the toxic form of mercury that can move up the food web and harm seabirds. These bacteria tend to be found in deep-water sediments.

Stable mercury levels

The study also showed that mercury concentrat­ions in Pacific seabird eggs have been relatively stable over the past 50 years. This is surprising, given the dramatic changes in mercury concentrat­ions in Pacific waters.

A decline in surface-dwelling fish stocks in the Pacific Ocean has forced some seabirds to feed elsewhere where there are fewer sulphate-reducing bacteria. By changing their diet, these seabirds end up with lower mercury levels.

Monitoring programs have suggested that environmen­tal levels of mercury are in decline, but this research suggests otherwise. Based on our results, we believe monitoring programs need to consider the structure of the food web, including where these birds are foraging.

Human health threat

Although this research focuses on the eggs of seabirds, it has implicatio­ns for human health. The World Health Organisati­on has identified mercury as one of the top ten chemicals of major health concern.

Mercury pollution is a global issue since elemental mercury travels over long distance and methylmerc­ury accumulate­s in the food chain, posing a serious risk to both humans and wildlife who feed on seafood.

The global scale of this issue was the key driving force for a global environmen­tal treaty called the Minamata Convention, which enforces reductions on mercury emissions. The agreement entered into force on Aug. 16, 2017, making it the most recent internatio­nal law that aims to protect humans and the environmen­t from the threat of toxic mercury.

The current study on avian predators, which feed on marine food webs similar to those we feed on ourselves, illustrate­s how important it is to consider those food webs when considerin­g the risk of mercury.

Rather than simply considerin­g larger species high in the food chain as being riskiest, we suggest that government­s also consider the role of bacteria and reduce the consumptio­n of those fish feeding in food webs with high levels of sulphate-reducing bacteria. The Record welcomes your letters to the editor. Please limit your letters to 300 words. We reserve the right to edit for length, clarity, legality and taste. Please ensure there is a phone number or email where you can be reached, to confirm authorship and current town/city of residence. Names will not be withheld but the address and phone number of the writer are not published, except by request.

Preference is given to writers from the Eastern Townships.

Newspapers in English

Newspapers from Canada