The Daily Courier

Okanagan radio telescope finds ‘lighthouse’ in the sky

- By MIT News Service

Researcher­s from the Massachuse­tts Institute of Technology and other universiti­es are reporting a strange new discovery from a radio telescope near Penticton.

Captured in 2019 but publicized just last week in the journal Nature, the repeating signal was detected by the Canadian Hydrogen Intensity Mapping Experiment project at the Dominion Radio Astrophysi­cal Observator­y at White Lake.

The signal is classified as a fast radio burst or FRB — an intensely strong burst of radio waves of unknown astrophysi­cal origin, which typically lasts for a few millisecon­ds at most. However, this new signal persists for up to three seconds, about 1,000 times longer than the average FRB. Within this window, the team detected bursts of radio waves that repeat every 0.2 seconds in a clear periodic pattern, similar to a beating heart.

The researcher­s have labeled the signal FRB 20191221A, and it is currently the longest-lasting FRB, with the clearest periodic pattern, detected to date.

The source of the signal lies in a distant galaxy, several billion light-years from Earth. Exactly what that source might be remains a mystery, though astronomer­s suspect the signal could emanate from either a radio pulsar or a magnetar, both of which are types of neutron stars — extremely dense, rapidly spinning collapsed cores of giant stars.

“There are not many things in the universe that emit strictly periodic signals,” says Daniele Michilli, a post-doctoral researcher at MIT’s Kavli Institute for Astrophysi­cs and Space Research.

“Examples that we know of in our own galaxy are radio pulsars and magnetars, which rotate and produce a beamed emission similar to a lighthouse. And we think this new signal could be a magnetar or pulsar on steroids.”

The team hopes to detect more periodic signals from this source, which could then be used as an astrophysi­cal clock. For instance, the frequency of the bursts, and how they change as the source moves away from Earth, could be used to measure the rate at which the universe is expanding.

Since the first FRB was discovered in 2007, hundreds of similar radio flashes have been detected across the universe, most recently by CHIME, the antenna of which consists of four steel half-pipes wrapped in wire mesh that together form an array the size of six NHL rinks.

CHIME continuous­ly observes the sky as the Earth rotates, and is designed to pick up radio waves emitted by hydrogen in the very earliest stages of the universe. The telescope also happens to be sensitive to fast radio bursts, and since it began observing the sky in 2018, CHIME has detected hundreds of FRBs emanating from different parts of the sky.

The vast majority of FRBs observed to date are one-offs — ultra-bright bursts of radio waves that last for a few millisecon­ds before blinking off. Recently, researcher­s discovered the first periodic FRB that appeared to emit a regular pattern of radio waves. This signal consisted of a four-day window of random bursts that then repeated every 16 days. This 16day cycle indicated a periodic pattern of activity, though the signal of the actual radio bursts was random rather than periodic.

On Dec. 21, 2019, CHIME picked up a signal of a potential FRB, which immediatel­y drew the attention of Michilli, who was scanning the incoming data.

“It was unusual,” he recalls. “Not only was it very long, lasting about three seconds, but there were periodic peaks that were remarkably precise, emitting every fraction of a second — boom, boom, boom — like a heartbeat. This is the first time the signal itself is periodic.”

In analyzing the pattern of FRB 20191221A’s radio bursts, Michilli and his colleagues found similariti­es with emissions from radio pulsars and magnetars in our own galaxy. Radio pulsars are neutron stars that emit beams of radio waves, appearing to pulse as the star rotates, while a similar emission is produced by magnetars due to their extreme magnetic fields. The main difference between the new signal and radio emissions from our own galactic pulsars and magnetars is that FRB 20191221A appears to be more than a million times brighter. Michilli says the luminous flashes may originate from a distant radio pulsar or magnetar that is normally less bright as it rotates and for some unknown reason ejected a train of brilliant bursts, in a rare threesecon­d window that CHIME was luckily positioned to catch.

“CHIME has now detected many FRBs with different properties,” Michilli says. “We’ve seen some that live inside clouds that are very turbulent, while others look like they’re in clean environmen­ts. From the properties of this new signal, we can say that around this source, there’s a cloud of plasma that must be extremely turbulent.”

The astronomer­s hope to catch additional bursts from the periodic FRB 20191221A, which can help to refine their understand­ing of its source, and of neutron stars in general.

“This detection raises the question of what could cause this extreme signal that we’ve never seen before, and how can we use this signal to study the universe,” Michilli says.

 ?? Special to Westside Weekly ?? One of the four half-pipes that make up the Canadian Hydrogen Intensity Mapping Experiment project at the Dominion Radio Astrophysi­cal Observator­y near Penticton.
Special to Westside Weekly One of the four half-pipes that make up the Canadian Hydrogen Intensity Mapping Experiment project at the Dominion Radio Astrophysi­cal Observator­y near Penticton.

Newspapers in English

Newspapers from Canada