The Telegram (St. John's)

Kilbride native reaches for infinity, and beyond

Anna O’grady may have just gone light-years toward a better understand­ing of the stability of stars

- PETER JACKSON LOCAL JOURNALISM INITIATIVE REPORTER peter.jackson@thetelegra­m.com @pjackson_nl

Anna O’grady remembers the day she decided to make a career out of stargazing.

“When I was in Grade 8, my mother bought a book for me called ‘The Atlas of the Universe,’ which was sort of like a coffee-table, pop science book on astronomy,” the Kilbride native said in a recent phone interview.

“I think I read the entire book in a day, and so that was when I kind of knew that was what I wanted to do.”

O’grady, who attended Bishops College high school in St. John’s, says she was always interested in science, about the way things work.

“I always had an interest in the night sky, and the planets in particular.”

At Memorial University, she took advantage of a handful of astronomy courses offered through the geology and physics department­s.

“Those were really, really excellent and I learned a lot from those,” she said.

That’s also where she met professors Ivan Booth and Hari Kunduri, who specialize in black holes.

After graduating in 2016, O’grady went to the University of Toronto to study astronomy at the David A. Dunlap Department of Astronomy & Astrophysi­cs and the Dunlap Institute for Astronomy & Astrophysi­cs.

In October 2020, still a PHD student, she was lead author of a paper in The Astrophysi­cal Journal (https://ui.adsabs.harvard.edu/abs/2020apj...901..135o/ abstract) that may well shake up what’s known about the nature of exploding stars.

“This was extremely careful and clever detective work on Anna’s part,” Bryan Gaensler, one of her supervisor­s and a contributo­r to the paper, told the Dunlap Institutes newsletter. “She started by studying 1.5 million stars, and was able to identify 12 extremely unusual stars that are hard to explain. I’m excited about what more we can learn about this strange population from additional data.”

STAR WITHIN A STAR

Saying the stars are hard to explain is an understate­ment, but O’grady does her best to put it in layman’s terms.

She and her colleagues were originally looking for something called Thorne–żytkow objects (TZOS) in two galaxies on the fringes of the Milky Way called the Magellanic Clouds.

A TZO, she explains, is a star within a star — “almost like a turducken of a star.”

The outside part is a massive red star. But the core is a neutron star, which is what’s leftover after a star explodes (a supernova).

If a star is big enough, the explosion creates a black hole — an object so compressed and dense that even light can’t escape from it. Neutron stars, which are not quite as dense, are the result of a smaller explosion.

Do TZOS actually exist? “That is something of an open question,” O’grady says.

The theory has been around for decades, but the discovery of an object dubbed HV 2112 in the Small Megallenic Cloud in 2014 is considered a strong candidate of being the real deal.

O’grady went looking for more. But she found something else.

EXPLOSIVE DISCOVERY

In theory, TZOS have to have a minimum solar mass. O’grady found 11 similar objects, but realized they were too small to be TZOS.

Instead, she realized they were super-agb stars.

Without belabourin­g the definition, super asymptotic­al giant branch stars are essentiall­y a missing link between smaller stars that eventually die out (like our own sun) and those that explode into supernovas.

“We were not searching for these stars at all, but sometimes science throws curveballs at you,” O’grady said.

Before O’grady’s paper, there was only one known candidate for a super-agb. Now there are 12.

O’grady says she has received a lot of positive feedback from colleagues, but time will tell how her discovery stands up to scrutiny as others follow up on her findings.

“There’s always this kind of passing the ball back and forth, back and forth, between observatio­n and theory in science.”

Either way, her research contribute­s to a broader understand­ing of what the universe is made of and how it works.

“By finding what we think are these stars, that fit on the tipping point between stars that don’t explode and stars that do explode … it will allow us to get a better understand­ing about which stars explode.”

 ?? CONTRIBUTE­D ?? PHD candidate Anna O’grady stands by one of the Magellan Telescopes at Las Campanas Observator­y in Chile.
CONTRIBUTE­D PHD candidate Anna O’grady stands by one of the Magellan Telescopes at Las Campanas Observator­y in Chile.
 ?? RICH BLENKINSOP­P • MUN ?? Anna O’grady of Kilbride received her B.SC. in math and physics at Memorial University in 2016 before heading to Toronto for doctoral work in astronomy.
RICH BLENKINSOP­P • MUN Anna O’grady of Kilbride received her B.SC. in math and physics at Memorial University in 2016 before heading to Toronto for doctoral work in astronomy.
 ?? CONTRIBUTE­D ?? The small (shown) and large Magellanic Clouds are galaxies just outside the Milky Way that appear as “smudges” of light in the night sky of Earth’s southern hemisphere.
CONTRIBUTE­D The small (shown) and large Magellanic Clouds are galaxies just outside the Milky Way that appear as “smudges” of light in the night sky of Earth’s southern hemisphere.

Newspapers in English

Newspapers from Canada