The Welland Tribune

Taming the ground cherry

With CRISPR, a fussy fruit inches toward the supermarke­t

- VERNIQUE GREENWOOD

The ground cherry might look at first like a purely ornamental plant. A member of the genus Physalis, it bears papery, heartshape­d husks that resemble Chinese lanterns. (The plant popularly known as the Chinese lantern is a close cousin.) Within each ground cherry casing is a small, tart, edible fruit, similar to a cherry tomato, that is sometimes sold at farmers’ markets.

The fruit might be more common in supermarke­ts were it not so difficult to grow in large quantities. Ground cherry bushes sprawl and can drop their fruits early, and the plants possess other undesirabl­e traits. Diminishin­g these traits through selective breeding would take years.

Last week, however, a team of researcher­s reported that, by removing certain portions of the plant’s DNA using common geneeditin­g techniques, they’ve produced a ground cherry with a larger fruit and a more ordered bush, greatly speeding the process of domesticat­ion. Their work, which appeared in the journal Nature Plants, is part of a scientific initiative called the Physalis Improvemen­t Project.

Ground cherries are related to tomatoes, which have a wellstudie­d genome. Joyce Van Eck, a plant geneticist at Cornell University and an author of the paper, and her colleagues had already discovered that, using CRISPR, a gene-editing technique that can snip out portions of the genome, they could alter a specific tomato gene and produce plants that produced flowers more quickly.

The scientists wondered whether the ground cherry could be similarly altered, to help fasttrack the domesticat­ion process. They examined the ground-cherry genome for analogues of known tomato genes, and found one: an analogue of a gene called “SELF-PRUNING” or SP, that in tomatoes controls the shape of the plant.

Using CRISPR, the team removed a small portion of SP from the ground-cherry genome. The resulting plants, when they grew, arranged themselves into more compact bushes. The team performed similar experiment­s with genes that influence flower number and fruit size.

“Sure enough, when we got those fruit off, they were larger than the parent ground-cherry,” Van Eck said. “Close to 25 per cent more weight in the fruit.”

Heartened by these successes, the researcher­s are working to see whether they can control the shape of ground cherry bushes. They are also keen to find a solution to the problem of fruit dropping off the bush.

“That can really complicate harvesting,” Van Eck said.

Tomatoes are known to carry a gene that influences the formation of a weak point on the stem of the fruit. Perhaps modulating this gene in the ground-cherry will make possible a variety that keeps a firmer grip on its fruits.

It took around two years to complete the experiment­s. In the future, changes could take less time, or more, depending on how much work is necessary to adjust a given trait.

Still, Van Eck estimates that with convention­al breeding techniques, addressing such traits can often take at least five years. And that’s if the trait breeders want to encourage is already present in some plants. If the trait isn’t readily available, then they face a much more difficult task of trying to track it down, then beginning the breeding process.

Because CRISPR involves only the removal of DNA, not the addition of new material, the resulting produce isn’t considered geneticall­y modified organisms in the U.S. or Canada, Van Eck said.

The researcher­s suggest that this technique could be helpful in bringing plants that aren’t grown widely into greater circulatio­n. The ground cherry could be a good first candidate.

 ?? ZACHARY LIPPMAN, COLD SPRING HARBOR LABORATORY/HHMI NYT ?? The stages of a ground cherry fruit's growth are shown at left, and the plant at right.
ZACHARY LIPPMAN, COLD SPRING HARBOR LABORATORY/HHMI NYT The stages of a ground cherry fruit's growth are shown at left, and the plant at right.
 ?? ZACHARY LIPPMAN
NYT ?? The fruit of unaltered ground cherries, left, and gene-edited ground cherries. Gene editing has produced a ground cherry with a larger fruit.
ZACHARY LIPPMAN NYT The fruit of unaltered ground cherries, left, and gene-edited ground cherries. Gene editing has produced a ground cherry with a larger fruit.

Newspapers in English

Newspapers from Canada