Toronto Star

Understand­ing urination, and other animal moves

- JAMES GORMAN THE NEW YORK TIMES

“I would describe him as an iconoclast. He doesn’t follow the social norms.” JIA FAN HU’S WIFE

David Hu was changing his infant son’s diaper when he got the idea for a study that eventually won him the Ig Nobel prize. No, not the Nobel Prize — the Ig Nobel prize, which bills itself as a reward for “achievemen­ts that make people laugh, then think.”

As male infants will do, his son urinated all over the front of Hu’s shirt, for a full 21 seconds. Yes, he counted off the time, because for him curiosity trumps irritation.

That was a long time for a small baby, he thought. How long did it take an adult to empty his bladder? He timed himself. Twenty-three seconds. “Wow, I thought, my son urinates like a real man already.”

He recounts all of this without a trace of embarrassm­ent, in person and in How to Walk on Water and Climb up Walls: Animal Movements and the Robotics of the Future, recently published, in which he describes both the silliness and profundity of his brand of research. No one who knows Hu, 39, would be surprised by this story. His family, friends, the animals around him — all inspire research questions.

His wife, Jia Fan, is a marketing researcher and senior data scientist at UPS. When they met, she had a dog, and he became intrigued by how it shook itself dry. So he set out to understand that process.

Now, he and his son and daughter sometimes bring home some sort of dead animal from a walk or a run. The roadkill goes into the freezer, where he used to keep frozen rats for his several snakes. (The legless lizard ate dog food). “My first reaction is not, oh, it’s gross. It’s ‘Do we have space in our freezer,’ ” Fan said.

He also saves earwax and teeth from his children, and lice and lice eggs from the inevitable schoolchil­d hair infestatio­ns. “We have separate vials for lice and lice eggs,” he pointed out.

“I would describe him as an iconoclast,” Fan said, laughing. “He doesn’t follow the social norms.”

Hu is a mathematic­ian in the Georgia Tech engineerin­g department who studies animals. His seemingly oddball work has drawn both the ire of grandstand­ing senators and the full-throated support of at least one person in charge of awarding grants from that bastion of frivolity, the U.S. army.

Sen. Jeff Flake put three of Hu’s research projects on a list of the 20 most wasteful federally funded scientific studies. The television show, Fox and Friends, featured Flake’s critique.

Naturally, Hu made the attack on his work the basis for a TEDx talk at Emory University, in which he took a bow for being “the country’s most wasteful scientist” and went on to argue that Flake completely misunderst­ood the nature of basic science.

Hu was tickled to think that one scientist could be responsibl­e for such supposed squanderin­g of the public’s money. Neither he nor his supporters were deterred.

Among those supporters is Samuel C. Stanton, a program manager at the Army Research Office in Durham, N.C., which funded Hu’s research on whether fire ants were a fluid or a solid. (More on that and the urination findings later.)

Stanton does not share Hu’s flippant irreverenc­e. So he is completely serious when he describes Hu as a scientist of “profound courage and integrity” who “goes where his curiosity leads him.”

Hu has “an uncanny ability to identify and follow through on scientific questions that are hidden in plain sight,” Stanton said. An aspiring doctor is led astray “Applied mathematic­ians have always been kind of playful,” Hu said recently while talking about his academic background — although they are perhaps not quite as playful as he can be. A few years ago he did gymnastic flips onto the stage of a Chinese game show that sometimes showcases scientists.

He grew up in Bethesda, Md., and while he was still in high school, he did his first published work on the strength of metals that had been made porous. He was a semifinali­st for the Westinghou­se Science Prize (the forerunner of the Intel Science Prize) and won several other awards.

That work helped him get into MIT, which he entered as a pre-med student planning to get an MD/Ph.D. He was soon led astray. Hu’s undergradu­ate adviser at MIT was Lakshminar­ayanan Mahadevan, a mathematic­ian who works to describe real-life processes in rigorous mathematic­al terms. Mahadevan, known to students and colleagues as Maha, investigat­ed wrinkling, for example. Naturally he won an Ig Nobel for that work.

“Maha lit the fire,” Hu said. Before he encountere­d his adviser’s research, he said, “It didn’t really make sense that you could make a living just playing with things.” But he came to see the possibilit­ies. Hu may be the first third-generation (in terms of scientific pedigree) Ig Nobel winner, because Mahadevan studied under the late Joseph Keller, a mathematic­ian at Stanford University. Keller won two Ig Nobels. One was for studying why ponytails swing from side-to-side, rather than up and down, when the ponytail owner is jogging. The other was an examinatio­n of why teapots dribble.

After MIT, Hu did research at the Courant Institute at New York University, another hotbed of real-world mathematic­s. He moved to Georgia Tech, after Jeannette Yen, a biologist there, told the university they ought to take a look at him.

From ants to self-assembling robots

Hu’s research may seem like pure fun, but much of it is built on the idea that how animals move and function can provide inspiratio­n for engineers designing human-made systems.

The title of Hu’s book refers to the “robots of the future,” and he emphasizes the way animal motion offers insights that can be applied to engineerin­g — bio-inspired design.

When Brazil’s Pantanal wetlands flood, for instance, fire ants form rafts so tightly interlaced that water doesn’t penetrate their mass. When he picked up such a mass in the lab, Hu writes, it felt like a pile of salad greens.

“The raft was springy, and if I squeezed it down to a fraction of its height, it recoiled back to its original shape. If I pulled it apart, it stretched like cheese on a pizza.”

He found out that the ants were constantly moving even though the shape of the mass stayed more or less the same. They were breaking and making connection­s all the time, and they became, in essence, a “self-healing” material.

The idea is appealing for many engineerin­g applicatio­ns, including concrete that mends itself and robots that selfassemb­le into large, complex structures.

And what about urination? It didn’t make sense to Hu that a grown man and an infant would have roughly the same urination time.

After he sent out undergradu­ates, under the guidance of Patricia Yang, a graduate student, to time urination in all the animals at the Atlanta Zoo, the situation became even more puzzling. Most mammals took between 10 and 30 seconds, with an average of 21 seconds. (Small animals do things differentl­y.)

The key was the urethra, essentiall­y a pipe out of the bladder, that enhanced the effect of gravity. Even a small amount of fluid in a narrow pipe can develop high pressure, with astonishin­g effects.

Water poured through a narrow pipe into a large wooden barrel can split the barrel. Hu said the experiment, known as Pascal’s barrel, can be replicated nowadays with Tupperware.

What is interestin­g about the urethra is that its proportion­s, length to diameter, stay roughly the same no matter the size of the animal (as long as it weighs more than about three kilograms).

The 21-second average urination time must be evolutiona­rily important. Perhaps any longer would attract predators? But then predators are subject to the same rule.

In any case, the principle of how to drain a container of fluid could be useful, Hu wrote in the original studies, to designers of “water towers, water backpacks and storage containers.”

Newspapers in English

Newspapers from Canada