China Daily (Hong Kong)

Healing to the bone

A team of scientists from HK and the mainland made a breakthrou­gh, pulling off a successful cross-boundary collaborat­ion with an unorthodox way to heal the bone. Dara Wang reports.

-

The Marvel Comics superhero Mr Immortal can heal just about anything — at the high price of suffering a near mortal injury himself. Hu Jinlian, a professor at the Institute of Textiles and Clothing at the Hong Kong Polytechni­c University, can do something like that for patients with bone injuries — without risking near fatal consequenc­es.

She and her team developed a bone scaffold for healing injuries. It can be operated through minimally invasive surgery and fit the bone injury perfectly, supporting the bone and helping to heal the injuries. It works even for bone injuries larger than 5 millimeter­s in diameter that cannot not self-heal.

There are two major components to the device — polyuretha­ne (PU), which is used for making resilient foam, and hydroxyapa­tite (HA), which already occurs naturally in bones.

PU is a kind of polymer, commonly used for seats and for the durable wheels on roller coasters and shopping carts. It has shape-memory function. Researcher­s compressed the PU foam into a small shape, tiny enough to be operated through minimally invasive surgery. Then they inserted it around the bone damage. Within a minute, after being soaked in a saline solution at 40 C, the foam returned to its original shape, molding itself to the damaged area precisely, Hu says.

The solution works for fractures, breaks and other defects of bone structure.

HA gives teeth and bones their hardness. It improves the hardness of the scaffold in the same manner, making it hard enough to support the bone.

Another function of HA is to help new cells grow and restore injured bones much more quickly, says Hu. As HA is a component of bone, bone cells recognize HA as “brothers” and cling onto them.

The porous structure of the scaffold provides “tubes” for the new cells to worm their way inside, find their “brothers”, and proliferat­e, Hu says.

Sixty-percent of the scaffold is composed of pores, and 99 percent of the pores on the device are interconne­cted. The pores are only 670 μm in diameter, close to what we find in natural bones.

Lab experiment­s were carried out on 18 rabbits with knee defects. Nine rabbits were implanted with the scaffold. The rest, the control group, were given no implants.

Twelve weeks later, researcher­s found rabbits that had received the implants showed a 46-percent increase in bone mass. That was nearly double the regrowth among the rabbits that did not receive the implants. There were also significan­tly more new blood vessels in the test group than were found in the control group.

Alternativ­es

The Journal of Tissue Engineerin­g cites more than 15 million cases of bone fractures or defects caused by misadventu­re or disease every year around the world. Defects caused by removal of bone tumors or fractures larger than 5 millimeter­s in diameter rarely heal without surgical interventi­on, says Guo Xia, associate professor of the Department of Rehabilita­tion Sciences at PolyU. She is the joint principal researcher of the study and worked as an orthopedis­t for eight years before joining the university.

Guo remarked that current standard practice for repairing bone injuries is the autograft. Autograft involves removing healthy bone from one part of the body and using it to repair the damaged bone. “It works quite well, while it’s a painful procedure, and let’s face it there are no ‘spare parts’ or non-essential bones in the human body,” Guo says. Removing healthy bones causes pain. There are risks of infection and other complicati­ons. Problems can flare up where healthy bone is removed.

Another procedure for repairing damaged bones uses shape-memory alloys. These are able to retain their original form under stimulus. They’re not perfect. Shape-memory alloys don’t fit perfectly into damaged areas, Guo says. The surgeon has to smooth rough edges around the repair. Alternativ­ely the alloy may be reduced to tiny fragments. Even then, there is no perfect fit. Pain and other discomfort is inevitable and there’s also a risk of infection.

By contrast, the shapememor­y bone scaffold creates a perfect fit, Guo says. It can be implanted using minimally invasive surgery. The risk of pain and secondary infection is minimized and hospital stays are shortened, she says.

The objective is that the scaffold supports the injured area, and stimulates regrowth of bone. Hu noted that the ideal scaffold should degrade in the body over time, after the bone heals.

The natural degradatio­n of the device noted in the animal experiment­s proceeded slowly during the 12 weeks. It will take years to figure out how long it takes for complete degradatio­n and only then will the researcher­s be able to determine whether it has any side effects on the human body.

Guo says she was satisfied with the slowness. If degradatio­n proceeds too fast, there is a risk of acids being released, changing the pH. That would pose a risk of tumors later on, Guo says.

Shooting for the moon

The developmen­t of the bone scaffold is another case where cross-boundary collaborat­ion played an important role.

When they started the project in 2013, Guo with her medical background didn’t take the project seriously at first. She thought it was shooting for the moon. Then along came Xie Ruiqi — Hu’s doctoral student from Renqiu, Hebei province who, 27 years old at that time, took up the project for her doctoral research.

 ?? PROVIDED TO CHINA DAILY DARA WANG / CHINA DAILY ?? in collaborat­ion with Sichuan University developed a bone scaffold made by shapememor­y polymers. The scaffold can be molded to fit perfectly into fractures and other injuries. Hu Jinlian (center), Guo Xia (left) and Xie Ruiqi (right), along with other researcher­s from the Hong Kong Polytechni­c University and Sichuan University, spent five years developing a self-fitting bone scaffold that can be operated through minimally invasive surgery.
PROVIDED TO CHINA DAILY DARA WANG / CHINA DAILY in collaborat­ion with Sichuan University developed a bone scaffold made by shapememor­y polymers. The scaffold can be molded to fit perfectly into fractures and other injuries. Hu Jinlian (center), Guo Xia (left) and Xie Ruiqi (right), along with other researcher­s from the Hong Kong Polytechni­c University and Sichuan University, spent five years developing a self-fitting bone scaffold that can be operated through minimally invasive surgery.
 ??  ?? The Hong Kong Polytechni­c University
The Hong Kong Polytechni­c University

Newspapers in English

Newspapers from China