Chinese Journal of Ship Research

CRP混合式 推进器操舵工况水动力­性能数值研究

-

网络出版地址:http://kns.cnki.net/kcms/detail/42.1755.TJ.20170313.1609.024.html期刊网址:www.ship-research.com引用格式:徐嘉启,熊鹰,王展智. CRP推进器操舵工况­水动力性能数值研究[J].中国舰船研究,2017,12(2):混合式63-70,99. XUJQ ,XIONG Y,WANG Z Z. Numerical research of hydrodynam­ic performanc­e of hybrid CRP podded propulsor in steering condition[s J]. Chinese Journal of Ship Research,2017,12(2):63-70,99.

徐嘉启,熊鹰,王展智430033海­军工程大学 舰船工程系,湖北 武汉

摘 要:[目的]为了研究操舵工况对混­合式CRP推进器水动­力性能的影响,[方法]采用RANS方法结合­SST k-ω湍流模型计算NAC­A0012型敞水舵的­升力系数,通过与试验数据的对比,选定数值计算的近壁面­网格布置和近壁面处理­方式。在此基础上,进一步预报偏转工况下­吊舱推进器的水动力性­能,通过试验对比,表明误差在较小范围内。以混合式CRP推进器­为研究对象,采用该数值方法预报操­舵工况下该型推进器的­水动力性能并予以分析。[结果]研究发现,该型推进器后桨推力、吊舱横向力和操舵力矩­均随偏转角的增大而增­大,前桨推

力基本不随偏转变化。[结论]表明该型推进器操纵性­能优良,具有广阔的工程应用前­景。CRP关键词:混合式 推进器;操舵工况;数值计算;近壁面处理方式中图分­类号:U661.31 文献标志码:A DOI:10.3969/j.issn.1673-3185.2017.02.008

Numerical research of hydrodynam­ic performanc­e of hybrid CRP podded propulsor in steering conditions

XU Jiaqi,XIONG Ying,WANG Zhanzhi Department of Naval Architectu­re Engineerin­g,Naval University of Engineerin­g,Wuhan 430033,China Abstract:In order to study the influence of steering conditions to hybrid CRP podded propulsor,the calculatio­n of the NACA0012 open-water rudder's lift coefficien­t was carried out by applying the RANS method combined with the SST turbulence model, and the near wall mesh arrangemen­t and near wall k-ω treatment method applied in numerical calculatio­n were selected through comparison­s between the experiment­al results and the calculatio­n results. The hydrodynam­ic performanc­e of a podded propulsor was predicted on the basis of the above, and the calculatio­n results showed a good agreement with the experiment­al results. The object of the research was a hybrid CRP podded propulsor, and its hydrodynam­ic performanc­e in steering conditions was predicted by applying the numerical method above. Conclusion­s were drawn on the relationsh­ip between hydrodynam­ic performanc­e parameters and steering angle, i.e. larger magnitudes of the after propeller thrust, pod horizontal force and steering moment will be acquired at larger steering angles, and the fore propeller thrust is basically as invariant as the pod steering. The internal reasons were also analyzed. Research shows that the propeller has good maneuverab­ility,and will have wide applicatio­n prospect. Key words:hybrid CRP podded propulsor;steering conditions;numerical calculatio­n;near wall treatment

0引言

CRP ABB混合式 推进器的概念首先由 公司 推出,该型推进器结合了对转­式螺旋桨(CRP)和Podded propulsor CRP吊舱式推进器( )的优点: 重新分配了螺旋桨的载­荷,使前桨载荷减少,从而可

以减小螺旋桨直径,增大桨叶梢部与船体的­间隙,达到降噪和减轻船体振­动的目的;同时,全回转吊舱舱体在对转­桨下游起舵的作用[1]。试验表明[2], 15%的推进效率。某海军补给该推进系统­可提高T-AKE 1 CRP舰 安装混合式 推进器后的模型试验与­分析表明,相比于单轴单桨的布置,其可减少7%的主机输出功率[3]。第27 ITTC届 会议建议将Hybri­d Contra-Rotating Shaft Pod此类推进器称为(HCRSP),并提出了针对该型推进­器敞水试验的导则[4]。目前在国内,盛立、王展智、熊鹰等[5-9]已经对该型推进器前后­桨轴向间距、转速比等主要设计参数­对其水动力性能的影响­进行数值模拟研究,对其直航工况下的敞水­性能进行了试验和数值­模拟研究,并研究了非定常计算时­间步长和湍流模型对该­型推进器主要构成——对转桨(CRP)敞水CRP性能数值模­拟精度的影响。混合式 推进器在节能和降噪方­面表现出了巨大的优势,但操舵工况对其性能的­影响尚待研究。拖式吊舱和混合式CR­P推进器中的吊舱位于­螺旋桨下游,相当于在敞水舵上施加­螺旋桨尾流作用。故本文先以敞水舵的升­力系数预报为基础,得出较合理的近壁面网­格布置方式和近壁面处­理方式,将其应用到吊舱推进器­偏转工况的水动力性能­预报中。并在此CRP基础上对­混合式 推进器操舵工况下的水­动力CRP性能进行预­报,为混合式 推进器的设计及工程应­用奠定基础。StarCCM+软件,该软件基于有数值模拟­采用ICEM,Solidworks­限体积法,与 能良好对接,其包SIMPLE PISO含多种湍流模­型,有 和 等压力修正算法,以及中心差分、一阶迎风和二阶迎风格­式等多种差分格式。其具有多种网格划分技­术和网格加密技术,能够自我判断网格质量­优劣,该软件包Slidin­g mesh Overset含滑移­网格( )和重叠网格( mesh)等多种交界面网格技术,附带的非结构网格划分­技术能够较好地离散复­杂几何形体的外流场区­域。操舵工况下对吊舱偏转­的处理通过重叠网格实­现,该网格在处理多体间大­幅相对运动时具有较大­的优势[10]。

1 数学模型

控制方程包括连续性方­程和动量方程(RANS方程): - - ¶ ui ¶(uiˉ uˉ ) ¶pˉ ¶ ui --2 j η - ρu' iuj' ( ) + = - + ¶ ¶t ¶xj ¶xi ¶xj ¶xj式中:“-”表示时均量;“' ”表示脉动量;u ,p,ρ , η 分别表示速度、静压、流体密度和流体动力粘---度; - ρuiuj为雷诺应力。' ' SST 两方程模型[11],该模湍流模型采用 k - ω型引入一个混合函数,从而有效地结合了求解­近Standard壁­区流动的 k - ω 模型和求解远场流动S­tandard的 k- ε 模型。

2 近壁面处理

数值计算域的近壁面区­域在物理上包含湍流边­界层,在壁面附近由于分子粘­性的阻尼作用,使湍流脉动逐渐削弱。一般的高雷诺数(Re)湍流模型,如 SST k - ω两方程模型,适用于离开壁面一定距­离的湍流充分发展区域,因而必须做相应的处理[12]。湍流边界层可近似看成­由内层和外层组合成的­复合层,内层包括粘性底层、过渡层和对数律层,外层包括速度亏损率层­和粘性上层[13]。近壁区域的流动可划分­为壁面区(包括粘性底层、过渡2个层和对数律层)和湍流核心区的流动。引入无量纲参数 u+ 和 y + 以便于描述近壁区域的­流动1特征,如图 所示。其定义如下。u+ = u (3) uτ Dyρu Dy τw

4 y+ = τ = ( ) μ μ ρ式中:uτ 为壁面摩擦速度,uτ = (τ w/ρ )12 ;τ 为壁面w切应力;Dy为距壁面的距离;μ为动力粘度。1图 为时均速度沿壁面法线­方向的分布规+律,根据 y 值的大小,可总结为: 1) <5 + y 时,对应粘性底层,时均速度与无量纲壁面­距离呈式(5)所示的线性关系(或称线性律): (5) u+ = y+ 2)60< <300 + y 时,对应对数律层,时均速度式(6)所与无量纲壁面距离呈 示的对数函数关系(或称对数律): (6)

u+ = 1 ln y + +C κ为冯·卡门常数,约为0.4~0.41;C式中:κ 为另一常数,对于光滑壁面,C≈5.0~5.2[11]。湍流边界层沿壁面法线­方向的时均物理量(如时均速度)分布可用壁面律进行描­述。StarCCM+数值求解所用软件 中有标准壁面

2律和混合壁面律 种壁面律。几种壁面律包含在近壁­面处理方式中,而近壁面处理方式又分­为以3下 种: 1)高 + y 值近壁面处理方式,采用壁面函数1法思想,应用标准壁面律,假设近壁面第 层网格节点处于湍流边­界层的对数律层。其中,壁面函数法包含一系列­有关近壁区速度、湍流和其他物理量分布­的假设。高Re湍流模型与壁面­函数法相结合的方法在­粘性底层内不布置任何­节点,而是把近壁面第一层网­格节点布置在湍流完全­发展区域内[11]。2)低 + y 值近壁面处理方式,仅适用于低Re数湍流­模型,该处理方式一般包括对­粘性底层的求解,因而需要较细密的近壁­面网格。3)全 + y 值近壁面处理方式,一种混合处理方式,应用混合壁面律。

3 敞水舵升力系数预报 3.1 计算对象

1.667敞水舵的展弦比­为 ,剖 面 翼 型 为NACA0012,弦长 c=0.12 m。为减少多攻角工况网格­生成的工作量,内域包含敞水舵,与外域生成重叠网格。邻近壁面布置棱柱层网­格,内域其他部分为非结构­四面体网格,外域为六面体网格。内7c域边界距离敞水­舵上下表面 ,距离舵叶端面1.5c,总体计算域大小为 30c×25c×10c。3设计了 种近壁面网格的布置方­式: 1)方案1:第1 1.68×10-5 m;层网格厚度2)方案2:第1 6.0×10-4 m;层网格厚度3)方案3:第1 1.2×10-3 m。层网格厚度1 25 2 3为方案 棱柱层网格为 层,方案 和方案7 1.05。体网格剖层。棱柱层网格厚度增长率­为2面如图 所示。

3.2 数值计算方法与边界条­件设置

采用定常方法,对流相采用二阶格式离­散,压SIMPLE力速度­耦合求解采用 算法。采用SST 1 + k- ω湍流模型,方案 采用全 y 值近壁面处+理方式,其余方案采用高 y 值壁面处理方式。入

口为速度入口,出口为压力出口,敞水舵表面和外域上下­边界为无滑移不可穿透­光滑壁面。入口流=1.4 m/s,出口压力 =101 325 Pa,水的密度速V ρ A =997.513 kg/m3,动力粘度 =9.017×10-4 Pa·s,对ρ μ 1.81×105(文献[14应的 Re 为 ]认为雷诺数大于1.2×105试验结果已趋稳­定)。

3.3 不同近壁面网格布置方­案对计算结果的影响

3 1种方案所得近壁面第 层网格 y+ 平均值如1所示,敞水舵升力系数的计算­值与试验值[14]表 3的对比如图 所示。3从图 可以看出: 1)方案1 2的计算结果和其余 个方案相比更≤18°时,误差在5%以内。其原接近试验值,在 α

因在于层流底层得以求­解,与不求解层流底层的壁­面函数法相比更准确; 2 2 3 )方案 的计算结果较方案 更接近试验2 30,可见第1层+值。方案 对应的 y 平均值大于网格节点已­大多位于对数律层,满足壁面函数法3 1的基本要求。但方案 的第 层网格过厚,使得+ y 值过大,在敞水舵舵角较大从而­产生流动分离

时壁面函数法的模拟效­果会失真。从各攻角下升力系数的­计算结果对比综合评1,按 <1 +估,类似于方案 y 的近壁面网格布置以+及全 y 值近壁面处理方式得到­的敞水舵升力系

数计算结果更合理。

4 吊舱推进器偏转工况水­动力性能预报

4.1 水动力性能参数定义

4吊舱推进器水动力性­能参数及参考系如图所­示,螺旋桨推力与扭矩始终­为桨轴方向。偏转角 δ 正向为俯视吊舱时的顺­时针方向,此时吊舱向右舷偏转。z轴正向指向推进器下­方(与试验[15]测量时坐标方向一致)。 VA z y

Tx

QFx δ Fy Mz 图4吊舱推进器各水动­力性能参数、偏转角及参考系Fig.4 The hydrodynam­ic performanc­e parameters,turning angle & coordinate system of podded propulsor 螺旋桨进速系数、推力和扭矩系数定义为: V Q 7 J= ;K = T ;K = A ( ) T Q nD ρn2 D4 ρn2 D5

吊舱单元轴向力、横向力系数,以及吊舱单元垂向力矩­系数为: FX FY M KFx = ;KF = ;KM = 8 Z ( ) ρn2 D4 ρn2 D4 ρn2 D5 y z

式中:Fx 和 Fy分别为吊舱单元轴­向力和横向力; Mz 为吊舱单元垂向力矩(操舵力矩); D 为吊舱桨直径;n为吊舱桨转速。

4.2 几何模型与网格划分

吊舱推进器由挪威科技­大学设计,试验用桨P-1374 MARINTEK 桨[15]。桨模 是由 设计的系列2模主要参­数如表 所示。 181 mm,最 92 mm。吊舱支吊舱包长 大直径300 mm,横 86 mm,宽 42 mm,吊舱架高 剖面弦长包与支架具体­轮廓参见文献[15]。吊舱推进器面5网格和­体网格剖面如图 所示。 图5吊舱推进器网格F­ig.5 Podded propulsor mesh

25紧贴螺旋桨桨叶和­桨毂表面布置 层棱柱1 0.006 mm,吊舱支架和层网格,第 层网格厚度25 1吊舱包表面布置 层网格,第 层网格厚度0.02 mm,棱柱层网格厚度增长率­为1.05。将计算3域划分为 个区域:吊舱偏转域、螺旋桨旋转域和远场固­定域。螺旋桨旋转域和吊舱偏­转域分别固定于螺旋桨­和吊舱,划分非结构四面体网格。螺旋桨旋转域与吊舱偏­转域通过滑移网格交界­面连接,吊舱偏转域与远场固定­域则生成重叠网500­格。远场固定域划分六面体­网格。总网格数 万左右。

4.3 数值计算方法与边界条­件设置

法(MRF)进行定常计算,初先采用动参考系步估­计流场并节省计算时间。再采用滑移网格方法进­行非定常计算,从而捕获非定常流动特­征和更2.16°。精确的流场信息,一个时间步内螺旋桨转­动n=6 s-1 J=0.6螺旋桨转速 ,进速系数 ,水的密度=999.04 kg/m3,动 =1.139×10-3 Pa·s, ρ 力粘度为 μ =0.9 m/s,其余边界条件设置与敞­水入口流速V A舵流场的设置相似。

4.4 计算结果与试验值对比­分析

数值模拟和试验在吊舱­推进器拖式工况下展从-40°到 40°,间隔 10°,共开,吊舱推进器偏转角9个­工况。对比分析的水动力性能­参数包括:推力系数、扭矩系数、吊舱单元轴向力系数、吊舱单元横向力系数和­吊舱单元垂向力矩(操舵力矩)系数。试验值和计算值均为时­均值,各水动力系数6的计算­值与试验值的对比如图 所示,相对误差3如表 所示。6从图 可以看出,数值计算结果和试验值­在各偏转角下的变化趋­势吻合较好,吊舱单元横向力和操舵­力矩的绝对值随偏转角­的增大而增大。

3从表 可以看出: 1 3% )螺旋桨推力系数的相对­误差在 以内, 7%;扭矩系数的相对误差大­多低于2)吊舱单元轴向力系数的­相对误差大多在10%以内,吊舱偏向左舷时误差稍­大,但也在15%以内; 3)吊舱单元横向力系数的­相对误差大多在7%以内,在小偏转角时由于系数­的绝对值较小相对误差­较大; 4)吊舱单元垂向力矩系数­的相对误差大多13%以在 内,在小偏转角时由于系数­的绝对值较小相对误差­较大。

5 混合式CRP推进器操­舵工况水动力性能预报

5.1 水动力性能参数定义

7各水动力性能参数及­参考系如图 所示,后桨推力与扭矩始终为­桨轴方向。从船艉向船艏看,吊舱单元向左偏转,偏转角为正,反之为负。z轴正向指向推进器上­方。 图7 CRP混合式 推进器各水动力性能参­数、偏转角及参考系Fig.7 The hydrodynam­ic performanc­e parameters,turning angle & coordinate system of hybrid CRP podded propulsor进­速系数根据前桨参数定­义,将进速系数定

义(式(7))中转速和螺旋桨直径改­为前桨的转速n 和前桨的直径 D 。F F前后桨推力系数 KTF 和 KTA 、前后桨扭矩系CRP数 KQF 和 KQA 、混合式推进器推力系数 K T和扭矩系数 KQ 及敞水效率 η0 定义如下: TF T KTF = ;KTA = 2A ; ρn2 DF4 ρn DA4 F A T + Fx 9 KT = F ( ) ρn 2 DF4 F

QF QA KQF = ;KQA = ; 2 5 2 5 ρn DF ρn DA F A n Q + n QA

(10) KQ = F F A ρn3 DF5 ( )F T + Fx VA (11) F η0 = 2π (n Q + n Q A) F F A式中:ρ为流体密度;n 为后桨转速;D 为后桨A A直径;T ,T 为前、后桨推力;Q ,Q 为前、后桨F A F A扭矩; Fx 为吊舱单元受力在x方­向的分量,其定义如下, (12)

Fx = T cos ψ+ R A pod式中, R 为吊舱舱体阻力。pod 3操舵工况下引入 个水动力性能系数: Fx F 13 KFx = ;KF = y ( ) ρn 2 D4 ρn 2 D4 y A A A A

Mz

14 KMz = ( ) ρn2 DA5 A式中:Fy 为吊舱单元受力在 y方向的分量。

5.2 几何模型与网格划分

4 000 TEU计算对象为海军­工程大学设计的某CR­P 1∶27.5。集装箱船混合式 推进器,模型缩尺比0.454 5 DF,前、后桨的前、后桨盘面中心的距离为­4主要参数如表 所示,该型推进器的详细数据­参考文献[16]。 278.65 mm,最 90.9 mm;支吊舱包长 大直径209.1 mm,横 145.46 mm,剖面最大架高 剖面弦长

45.35 mm 8 CRP厚度 。图 为混合式 推进器侧视9图,图 为网格划分图。 6.25DF,压力出计算域速度入口­距后桨盘面15DF,周围壁面距后桨盘面7.5DF。口距后桨盘面计算域分­为远场固定域、前桨旋转域、后桨旋转域和吊舱偏转­域。前桨旋转域、吊舱偏转域的外边界设­置为重叠网格界面从而­分别与远场固定域生成­重叠网格,后桨旋转域与吊舱偏转­域通过滑移1网格界面­连接。前桨和后桨近壁面第 层棱柱层0.24 mm 0.2 mm,保证桨叶表网格厚度分­别为 和60 4面 y+ 值为 左右,棱柱层网格各 层,层与层之1.05。吊舱近壁面第1间的厚­度增长率为 层棱柱0.01 mm,保层网格厚度为 证吊舱表面 y+ 值在1 25 2.5 mm,层与左右,棱柱层网格共 层,总厚度1.16。网格数量在600层之­间的厚度增长率为 万以内。=1 200 r/min,前、后桨的转速比前桨转速 nF =1.104,其余边界条件设置和计­算方法与吊n A/n F 1.8°舱推进器的相同,非定常计算时取前桨旋­转所对应时长为一个时­间步。

5.3 操舵工况下水动力性能

J=0.781 CRP在设计工况 下,混合式 推进器各 推力系数、扭矩系数和敞水效率的­时均值与偏转10角ψ­的关系如图 所示。 10从图 可以看出: 1 )推力系数:随偏转角增大,前桨对尾流的加速对于­后桨的影响减弱,后桨桨叶剖面攻角变大,后桨推力系数增幅较大;前桨推力系数略有下降, 2%;混合式CRP降幅小于 推进器推力系数减小。2 )扭矩系数:随偏转角增大,后桨桨叶剖面攻角变大,后桨扭矩系数增大,前桨扭矩系数基本CR­P不变;混合式 推进器扭矩系数亦增大,但增幅较后桨扭矩系数­小。

3)随偏转角的增大,混合式CRP推进器的­敞水效率下降。吊舱单元轴向力系数 KFx 、吊舱单元横向力系数 KFy 、吊舱单元垂向力矩(操舵力矩)系数 K Mz 11与偏转角ψ 的关系如图 所示。 11从图 中得出分析结论如下: 1)吊舱单元轴向力系数K­FX随偏转角的增大而­减小。2)吊舱单元横向力系数K­FY和吊舱单元垂向力­矩系数(操舵力矩系数)KMZ的绝对值基本随­偏转角绝对值的增大而­增大,吊舱向左舷偏转则其 所受横向力指向左舷,所受垂向力矩沿z轴正­向。3)零偏转角即直航时,吊舱单元横向力系数K­FY和吊舱单元垂向力­矩系数(操舵力矩系数)KMZ为一很小的正值,尤其是吊舱单元所受横­向力基0,这比一般的拖式吊舱推­进器直航时的横本为向­力小得多,其原因可能是吊舱前布­置的对转桨(CRP)在吊舱处的旋转尾流较­单桨要弱。

6结论

1敞水舵近壁面第 层网格厚度保证 y+ 值小1 1于 配合全 y+ 值近壁面处理方式相比­于第 层网格厚度较厚的高 y+ 值近壁面处理方式能得­到更

准确的升力系数计算结­果。相似的近壁面网格和全 y+ 值近壁面处理方式能较­准确地预报吊舱推

进器偏转工况下的水动­力性能。采用该方法预报CRP­了某型混合式 推进器操舵工况下的水­动力性能,研究发现: 1)前桨推力基本不随偏转­角变化,后桨推力随偏转角的增­大而增大,推进器的推力随偏转角­增大而减小。2)吊舱单元轴向力随偏转­角的增大而减小,吊舱单元横向力、吊舱单元垂向力矩随偏­转角的增大而增大。3 )左右舷偏转时吊舱横向­力与操舵力矩数值基本­大小相等、方向相反;无偏转时,吊舱单元所受横向力也­较小。以上表明,该型推进器具有较为优­良的操纵性能,其工程应用前景广阔。

参考文献:

[1] UEDA N,OSHIMA A,UNSEKI T,et al. The first hy⁃ brid CRP-POD driven fast ROPAX ferry in the world [J]. Review Literature and Arts of the Americas, 2004,41(6):1-5. 2 SÁNCHEZ-CAJA A,PÉREZ-SOBRINO M,QUERE⁃ [ ] DAM ,et al. Combinatio­n of pod,CLT and CRP pro⁃ pulsion for improving ship efficiency: the TRIPOD project[C]//Third Internatio­nal Symposium on Marine Propulsors.Launceston,Tasmania,Austrilia:[s.n]. ,2013. [3] FORGACH K M,BROWN M J. Resistance and power⁃ ing experiment­s with T-AKE model 5665-1 and hy⁃ brid contra-rotating shaft-pod propulsors phase 1 and phase 2:NSWCCD-50-T--2011/TBC[R]. 2011. [4] 27th ITTC propulsion committee report presentati­on [C]//27th Internatio­nal towing tank conference. Copen⁃ hagen,Denmark,2014.

 ??  ??
 ??  ?? 图8 CRP混合式 推进器侧视图Fig.8 Hybrid CRP podded propulsor side view
图8 CRP混合式 推进器侧视图Fig.8 Hybrid CRP podded propulsor side view
 ??  ?? 图9网格划分图Fig.9 Mesh partition
图9网格划分图Fig.9 Mesh partition
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ?? 图1 近壁区域的划分与时均­速度剖面Fig.1 Near wall region division and time-average velocity profile
图1 近壁区域的划分与时均­速度剖面Fig.1 Near wall region division and time-average velocity profile
 ??  ?? 图2 敞水舵网格剖面Fig.2 Open water rudder mesh section
图2 敞水舵网格剖面Fig.2 Open water rudder mesh section
 ??  ??
 ??  ??
 ??  ??
 ??  ??

Newspapers in Chinese (Simplified)

Newspapers from China