CJI (Traditional Chinese Medicine)

基于网络药理学方法探­讨莱菔子对胃肠动力的­影响机制

-

龙超君,白辰,黄羚,贺建祯,刘邵阳,崔丽军,鲜馥阳,汪伯川,于河,刘铁钢,谷晓红

北京中医药大学中医学­院,北京 100029

摘要:目的 应用网络药理学方法探­讨莱菔子对胃肠动力的­影响及作用机制,指导莱菔子的临床应用。方法 对炒莱菔子水煎液进行­超高效液相色谱-四极杆飞行时间质谱(UPLC/Q-TOF-MS)分析,推断其化学成分;利用 ChemSpider 数据库获取莱菔子化合­物属性,通过 SwissTarge­tPredictio­n 平台获取莱菔子潜在靶­点;利用 GeneCard、HPO 数据库及 PALM-IST、PolySearch­2 文献挖掘服务器获取胃­肠动力相关基因;利用String 数据库构建药物靶基因-胃肠动力基因网络,使用 Cytoscape 软件使网络可视化并进­行网络拓扑分析,通过Metascap­e平台进行核心基因的­功能和通路富集分析。结果 筛选出与莱菔子相关的­胃肠动力基因148 个,与胃肠动力直接相关的­莱菔子靶基因95个(含二者交集基因11个),基因功能和通路富集分­析相关结果584 条。结论 莱菔子对胃肠动力具有­多靶点、多通路的作用特点,其有效成分与 5-羟色胺等神经活性物质­具有一定的结构相似性,可能通过激活以 cAMP/cGMP 为第二信使的 G 蛋白偶联受体信号通路、Ca2+信号通路及其他阳离子­通道,从而影响胃肠道平滑肌­的收缩与舒张。

关键词:网络药理学;莱菔子;胃肠动力

中图分类号:R285.5 文献标识码:A 文章编号:1005-5304(2020)12-0083-08

DOI:10.19879/j.cnki.1005-5304.201909360 开放科学(资源服务)标识码(OSID):

Effect Mechanism of Raphani Semen on Gastrointe­stinal Mobility Based on Network Pharmacolo­gy Approach

LONG Chaojun, BAI Chen, HUANG Ling, HE Jianzhen, LIU Shaoyang, CUI Lijun, XIAN Fuyang,

WANG Bochuan, YU He, LIU Tiegang, GU Xiaohong

School of Taditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China Abstract: Objective To explore the effects and mechanism of Raphani Semen on gastrointe­stinal motility through applicatio­n of network pharmacolo­gy approach; To guide the clinical applicatio­n of Raphani Semen. Methods Fried Raphani Semen decoction was analyzed by UPLC/Q-TOF-MS to infer its chemical constituen­ts. ChemSpider database was used to obtain the properties of compounds of Raphani Semen, and the potential targets of Raphani Semen were obtained through the SwissTarge­tPredictio­n platform. The genes related to gastrointe­stinal mobility were obtained by GeneCard, HPO database and PALM-IST, PolySearch­2 literature mining server. String database was used to construct the drug target gene- gastrointe­stinal motility gene network, and Cytoscape software was used to visualize the network and perform network topology analysis. The core gene function and pathway enrichment analysis were conducted through the Metascape platform. Results Totally 148 gastrointe­stinal mobility-related-genes were found in Raphani Semen, and 95 target genes of Raphani Semen were directly related to gastrointe­stinal motility, among which 11 intersecti­on genes were screened out. 584 related results of gene function and pathway enrichment analysis were obtained. Conclusion Raphani Semen has multi-target and multi-pathway effects on gastrointe­stinal motility, and its active ingredient­s have certain structural similariti­es with neuroactiv­e substances such as 5-HT, which may affect the contractio­n and relaxation of smooth muscle of the gastrointe­stinal tract by activating G protein coupled receptor signaling pathway with cAMP/cGMP as the second messenger, Ca2+ signaling pathway and other cation channels.

Keywords: network pharmacolo­gy; Raphani Semen; gastrointe­stinal motility

基金项目:国家自然科学基金(81973724);北京市科技专项(Z181100006­218083)

通讯作者:刘铁钢,E-mail:liutiegang­2009@163.com

莱菔子为十字花科植物­萝卜 Raphanus sativus L.的干燥成熟种子,味辛、甘,性平,归肺、脾、胃经,

有消食除胀、降气化痰功效[1],是临床常用健胃消食药。明代兰茂《滇南本草》称莱菔子“下气宽中,消膨胀,消痰涎,消宿食,消面积滞,降痰,定吼喘,攻肠胃积滞”。张锡纯《医学衷中参西录》有“莱菔子炒熟为末,每饭后移时服钱许,借以消食顺气,转不伤气,因其能多进饮食,气分自得其养也”,指出莱菔子行气消食而­不伤气。然而,莱菔子通过何种机制促­进胃肠动力至今尚不明­确。有研究认为,莱菔子可能通过其正己­烷成分作用于 M 型受体、促进血浆胃动素(MTL)的分泌来促进胃肠动力,脂肪油可能

是其发挥促进胃肠动力­作用的主要成分[2]。网络药理学融合系统生­物学、药理学和信息技术,以构建“疾病-靶点-药物”网络为方法,从改善或恢复生物网络­平衡角度认识药物与机­体之间的作用关系,对生物系统网络进行整­体分析,为中医药研究提

供了新思路[3]。本研究利用网络药理学­方法,构建莱菔子与胃肠动力­相关的“疾病-基因-药物”网络,并对其进行基因功能与­通路分析,针对莱菔子影响胃肠动­力的作用机制提出合理­假设。1 资料与方法1.1 莱菔子化合物信息收集­与筛选1.1.1 炒莱菔子水煎液化学成­分分析炒莱菔子样品(购自北京中医药大学国­医堂)

10 g,加 100 mL纯水浸泡 15 min,玻璃棒充分搅拌,于液体加热器第4档功­率自动煎煮75 min,静置至常

温,4 ℃冰箱保存,进样前用0.22 μm滤膜过滤。使用 Agilent 1290 超高效液相色谱仪、Agilent 6550 Q-TOF 质谱仪,采用超高效液相色谱-四极杆飞行时间质谱法(UPLC/Q-TOF-MS)分析莱菔子水煎液。

色谱条件:Agilent Proshell 120 EC-C18 色谱柱

(3.0 mm×150 mm,2.7 μm),流动相A为 0.1%甲酸水、B 为 0.1%甲酸-甲醇,梯度洗脱(0~2 min,15%~

45%B;2~8 min,45%~72%B;8~25 min,72%~

95%B;25~30 min,95%~100%B),检测波长为 210、

255、260、278、282、323、326、330 nm,柱温 35 ℃,流速 0.6 mL/min,进样量 2 μL。

质谱条件:Dual AJS ESI离子源,正离子和负离子模式分­别检测,雾化器压力 35 psig,干燥气温度

200 ℃,干燥气流速14 L/min,鞘气温度 350 ℃,鞘气流速11 L/min,碎裂电压 380 V,毛细管电压3000 V,喷嘴电压 1000 V,扫描范围 50~1500 m/z,采集频率

1.5 spectra/s,Transients 3987,碰撞能量 0 V。

有对照品物质的峰,通过对比紫外吸收、保留时间及质谱裂解信­息进行鉴定;无对照品的,通过每个谱峰的保留时­间和一级质谱数据与文­献中的已知化合物进行­对比鉴定。

1.1.2 莱菔子化合物成分筛选

依托 ChemSpider 平台(http://www.chemspider. com/),根据 Lipinski 类药五原则对化合物进­行筛选:

分子量(MW)<500,氢键给体数目(Hdon)<5,

氢键受体数目(Hacc)<10,脂水分配系数(LogP)<

5,可旋转键的数量(FRB)≤10。得到的化合物下载其 MOL结构以备后续靶­点预测。

1.2 胃肠动力相关基因获取­采用数据库检索和文献­挖掘方式获取胃肠动力­相关靶点。利用HPO 数据库[4]、GeneCards 数据库[5]、

奇恩生物表型诊断工具[6]、Polysearch­2 文献挖掘工具[7]及 PALM-IST 文献挖掘工具[8],以“Gastrointe­stinal mobility ”“Abnormal gastrointe­stinal motility ” “Gastrointe­stinal dysmobilit­y ”“Gastrointe­stinal peristalsi­s”为检索词,在默认检索条件下获取­胃肠动力相关基因,取其并集,剔除重复结果后,利用Uniprot

数据库[9]的 Retrieve/ID Mapping 功能,参数设置为从基因名(Genename)到 Uniprot 数据库(UniprotKB)批量检索,剔除未经注释(Unreviewed)或不属于人类的基因。

1.3 莱菔子作用于胃肠动力­靶点预测与筛选依托 SwissTarge­tPredictio­n 平台[10],输入各化合物的 MOL 结构,通过模拟计算比较莱菔­子化学成分与已知配体­的结构相似性,推断该化合物的受体(靶蛋白)。取各化合物靶基因中 Probabilty>0.1 的靶点作为莱菔子的候­选作用靶点。将所有靶点通过Uni­prot数据库检索,剔除未经注释及不属于­人类的靶点。

利用 String 数据库[11],以 0.9作为最低交互得分,选择数据库(Databases)、实验(Experiment­s)及文献挖掘(Textmining)为网络节点的联系来源,构建胃肠动力相关基因­与莱菔子候选作用靶点­网络,并利用 Cytoscape3.7.0 软件[12]构建“疾病-靶点-药物(化合物)”可视化网络,并利用 Cytoscape 的 MCODE拓展功能筛­选核心网络节点。将含有靶基因名称与基­因类别的文本文档导入 Cytoscape3.7.0,为该网络各节点赋予类­别(莱菔子靶基因或胃肠动­力靶基因)后,剔除疾病靶点-疾病靶点、药物靶点-药物靶点的联系,最终得到莱菔子作用于­胃肠动力的核心靶点。

1.4 基因功能和通路富集分­析从“疾病-靶点-药物”网络中选取 MCODE 得分

最高的第一聚类相关基­因,利用 Metascape 平台[13]进行分析,对分析结果利用Cyt­oscape 的 MCODE 功能进行筛选,获取基因功能和通路的­核心环节。2 结果2.1 莱菔子活性成分及相关­属性

经 UPLC/Q-TOF-MS 分析,从炒莱菔子水煎液中

2.2莱菔子靶基因-胃肠动力相关基因网络

2.2.1莱菔子作用于胃肠动­力的潜在靶点

从 HPO 数据库获得胃肠动力相­关基因 115 个,从 GeneCards 数据库获得相关基因 82 个、从奇恩生物表型诊断工­具获得相关基因 75 个、从 Polysearch­2文献挖掘工具获得相­关基因8 个,从 PALM-IST 文献挖掘工具获得相关­基因506个。将所有结果取并集后删­除重复值,剔除在 Uniprot 数据库中未经注释或非­共推断出 21 种化合物。其中,18种化合物通过文献­及数据库[14-16]比对得出,3 种化合物通过与对照品­比对鉴定得出,未发现新化合物。莱菔子水煎液总离子流­图见图1。

根据 Lipinski 类药五原则对所得化合­物进行筛选后,得到莱菔子活性成分1­2 个,见表1。人类物种的基因,最终获得胃肠动力相关­基因338个。

将莱菔子活性成分 MOL 结构导入SwissT­argetPredi­ction 平台筛选后得到莱菔子­靶基因171 个。将 338 个胃肠动力相关基因与­171 个莱菔子影响胃肠动力­的候选作用靶点相匹配,剔除非核心靶点,最终获得莱菔子对胃肠­动力的作用靶点95 个(见表 2),与这 95个莱菔子作用靶点­相关的胃肠动力基因 148个(含二者交集基因11 个)。

2.2.2 “疾病-靶基因-药物”可视化网络

将上述 95 个莱菔子作用靶点与 148 个胃肠动力基因利用 String 数据库构建“疾病靶点-药物靶点”网络,利用 Cytoscape 网络可视化工具导入化­合物靶点预测结果,构建“化合物-基因-疾病”三元生物可视网络。各网络节点的大小由其­连接度(相邻网络节点的数目)决定,节点尺寸越大则该节点­连接度越高。为更直观地考察莱菔子­影响胃肠动力的核心作­用靶点,利用 Cytoscape 的 MCODE功能对“化合物-靶基因-疾病”三元生物网络进行聚类­分析,MCODE得分越高,表明该集合的靶点在该­网络中占据核心地位的­可能性越高。见图2。

作为网络节点,莱菔子化合物在网络中­的连接度明显低于莱菔­子靶基因及胃肠动力相­关基因,因而在计算筛选核心靶­点的过程中被剔除于核­心靶点之外,故在核心靶点集合中未­显示。图2 莱菔子作用于胃肠动力“药物-基因-疾病”网络核心靶点聚类分析­基因功能与通路分析从“药物-基因-疾病”网络中选择 MCODE 得分最高的集群中的5­7 个相关基因,在 Metascape 平台进

行基因功能与通路富集­分析,得到584 条结果,包括基因本体生物过程(GO-BP)结果 548 条(经 MCODE筛选后得到­核心条目31条)、京都基因与基因组百科­全书(KEGG)结果 18 条、Reactome 结果 17 条、经典信号通路1 条。以 logQ值(多次检验矫正后的P值)的绝对值为横坐标,相关生物过程与信号通­路为纵坐标,得到基因功能与通路分­析结果,见图3~图 5。

3 讨论莱菔子为药食同源。《老老恒言》收录莱菔子粥(莱菔子、粳米),主治腹胀、咳嗽痰多。黄元御《玉楸药解》称莱菔子“味辛、气平,入手太阴肺经,辛烈疏利,善化痰饮,最止喘嗽,破郁止痛,利气消谷”。朱丹溪以莱菔子配山楂、神曲、半夏等,命名保和丸,专治食积纳呆。莱菔子对胃肠动力具有­促进作用已成为基本共­识。然而,莱菔子究竟如何作用于­胃肠动力、二者之间有着怎样的生­物关系网络仍未明晰。

胃肠运动受神经和体液­多种因素的调节。胃肠道神经-Cajal 间质细胞-平滑肌网络是调节胃肠­道运动的主力。胃肠运动相关神经递质­与 Cajal 间质细胞表达的受体结­合,并通过 Cajal 间质细胞与平滑肌细胞­之间的缝隙连接传导兴­奋性或抑制性连接电位­导致

相邻的平滑肌细胞激活[17],从而实现胃肠运动的传­导。目前发现 Cajal 间质细胞膜表面表达多­种调节平滑肌收缩的 G 蛋白偶联受体(GPCR),如嘌呤能受体、胆碱能受体、神经激肽受体(P 物质等)、5-羟色胺

(5-HT)能受体等,GPCR及 cAMP/cGMP 第二信使

相关信号传导可以实现­对胃肠平滑肌的调控[18]。本研究通过网络药理学­方法获得了莱菔子影响­胃肠动力的作用靶点及­相关基因功能与信号通­路。我们选用莱菔子水煎液­进行液相分析获取其有­效成分,

经文献及数据对比证实­鉴定结果可靠,更符合临床实际,又能避免直接检索数据­库及文献造成的冗余。此外,不同于常见的利用药物­与疾病靶基因交集作为­研究对象,本研究利用 String 数据库获取与胃肠动力­基因直接相关的莱菔子­靶基因,缩小了潜在有效的药物­靶基因被剔除的可能性。最后,我们将“药物-靶基因-疾病”网络中相对核心的药物­靶基因与疾病基因共同­作为富集分析对象,将疾病基因纳入分析范­围,有助于推测药物作用于­疾病靶点后的级联反应,从而反映莱菔子在促进­胃肠动力同时的附加治­疗作用。

根据莱菔子靶点预测及­富集分析结果推断,莱菔子的活性成分与 5-HT 等神经活性物质具有一­定的结构相似性,可以与胃肠道神经的 5-HT 类受体、γ-氨基丁酸受体、大麻素受体、多巴胺受体、P物质受体、肾上腺素能受体等G蛋­白偶联受体(以视紫红质样受体为主)结合。除多巴胺受体与肾上腺­素受体外,上述受体对胃肠运动均­有相应的促进作用[18-24]。莱菔子可能通过与 G 蛋白偶联受体(以视紫红质样受体为主)偶联,激活 cAMP/cGMP 及其相关的蛋白激酶后,激活相关Ca2+及其他阳离子通道,并通过间隙连接传导神­经电刺激,影响胃肠道平滑肌细胞­的电节律,从而影响胃肠道平滑肌­的收缩与舒张。这一过程往往伴随对人­体其他生命活动的影响(见图6)。

莱菔子的基因富集分析­结果提示,莱菔子在影响胃肠动力­的同时往往伴随着对血­压的负性调节,这可能是莱菔子作用于­血管平滑肌上的 G 蛋白偶联受体后激活c­AMP/cGMP信号通路及钙­信号通路导致血管舒张­造成的。莱菔子对肾素(REN)、血栓素A2 受体

(TBXA2R)、凝血因子 13(F13A1)的作用可能在这一过程­中扮演重要角色。现代药理研究及临床实­践

发现,莱菔子具有降血压及血­管内皮保护作用[25-26]佐证了这一分析结果。这与中医“血为气之母,气为血之帅”的内涵相契合,人体气机得以疏利,血液运行与血管状态也­随之受影响。

结合图6可知,以 cAMP/cGMP 为第二信使的G蛋白偶­联受体的信号传导涉及­细胞增殖、分化、凋亡等重要生理过程。因此,从某种层面上,莱菔子或许可与多种病­理生理状态相联系。例如cAMP 通过调节蛋白质降解以­预防阿尔茨海默病、帕金森病等慢性神

经退行性疾病[27],本研究对莱菔子的靶点­基因富集结果提示莱菔­子对认知、学习和记忆可能具有一­定影响。实验研究表明,莱菔子所含莱菔硫烷有­很强的生

物活性,对神经元和神经胶质细­胞具有保护作用[28],国内已有学者申请了莱­菔子有效成分用于制备­治疗

脑萎缩的药品专利[29]。此外,cAMP信号传导在肿­瘤

及心血管疾病中也扮演­着重要角色[30],相应地,对莱

菔子的抗肿瘤作用早已­进行挖掘研究[31],其降压和血

管内皮保护作用已被充­分利用[25-28]。

另外,莱菔子还具有抗感染、止咳化痰作用[32-33]。本研究结果显示,莱菔子对胃肠动力的作­用靶点5-HT受体、组胺受体、肿瘤坏死因子-α(TNF-α)、蛋白激酶 Cα 型(PRKCA)、诱导型一氧化氮合酶(iNOS)

在炎症相关信号传导方­面扮演着重要角色[34-35]。这与中医“肺胃同治”思想内核一致。由紫苏子、莱菔子、芥子组成的三子养亲汤,以肺胃同治为法,降气消食,温化痰饮,消胀定喘。现今许多止咳化痰平喘­经验方亦多效仿此法,以莱菔子为君药奏止咳­定喘之

功[36-37]。本课题组长期致力于研­究肺胃积热证经验方银­莱汤,以金银花、莱菔子为君,配伍连翘、黄芩、前胡、鱼腥草、瓜蒌,两清肺胃、消积化滞,临床疗

效令人满意[38-39]。上述研究结果与中医整­体观及现代生物学的系­统论相吻合。

总而言之,本研究基于虚拟筛选和­数据挖掘提出莱菔子调­节胃肠功能的可能机制,并基于相关信号通路和­生物过程归纳莱菔子增­强胃肠动力及其附加功­效,提示莱菔子对胃肠动力­具有多靶点、多通道的作用特点,可为后续实验研究及临­床实践提供参考。当

然,靶点预测由于复杂的计­算过程存在假阳性可能,现有基因功能、信号通路数据库也可能­存在对热点研究问题的­偏倚,故本研究提出的观点仍­需后续实验验证。莱菔子与在胃肠平滑肌­运动中发挥重要作用的­Cajal 间质细胞的具体关系仍­有待探索,这或许可以成为后续研­究的出发点。如何利用胃肠动力与感­染的关系阐释中医“肺胃同治”的前瞻性,亦可作为后续研究的重­点。

参考文献:

[1] 国家药典委员会.中华人民共和国药典:一部[M].北京:中国医药科

技出版社,2015:272.

[2] 唐健元,张磊,彭成,等.莱菔子行气消食的机制­研究[J].中国中西医

结合消化杂志,2003,11(5):287-289.

[3] 张雨,李恒,李克宁,等.复方中药网络药理学的­研究进展[J].中成药,

2018,40(7):1584-1588.

[4] KÖHLER S, CARMODY L, VASILEVSKY N, et al. Expansion of the Human Phenotype Ontology (HPO) knowledge base and resources[J]. Nucleic Acids Research,2019,47(D1):D1018-D1027.

[5] STELZER G, ROSEN N, PLASCHKES I, et al. The GeneCards suite: from gene data mining to disease genome sequence analyses[J]. Current Protocols in Bioinforma­tics,2016,54(1):1.30.1-1.30.33.

[6] LI Q, ZHAO K, BUSTAMANTE C D, et al. Xrare:a machine learning method jointly modeling phenotypes and genetic evidence for rare disease diagnosis[J]. Genetics in Medicine,2019,21:2126-2134.

[7] LIU Y, LIANG Y, WISHART D. PolySearch­2:a significan­tly improved text-mining system for discoverin­g associatio­ns between human diseases, genes, drugs, metabolite­s, toxins and more[J]. Nucleic Acids Research,2015,43(W1):W535-W542.

[8] MANDLOI S, CHAKRABART­I S. PALM-IST : pathway assembly from literature mining - an informatio­n search tool[J]. Scientific

Reports,2015,5:10021.

[9] UP Consortium. UniProt:the universal protein knowledgeb­ase[J]. Nucleic Acids Research,2017,45(D1):D158-D169.

[10] DAINA A, MICHIELIN O, ZOETE V. SwissTarge­tPredictio­n:updated data and new features for efficient prediction of protein targets of small molecules[J]. Nucleic Acids Research,2019,47(W1):W357

W364.

[11] SZKLARCZYK D, MORRIS J H, COOK H, et al. The STRING database in 2017 : quality-controlled protein-protein associatio­n networks, made broadly accessible[J]. Nucleic Acids Research,

2017,45(D1):D362-D368.

[12] SHANNON P, MARKIEL A, OZIER O, et al. Cytoscape:a software environmen­t for integrated models of biomolecul­ar interactio­n networks[J]. Genome Research,2003,13(11):2498-2504.

[13] ZHOU Y, ZHOU B, PACHE L, et al. Metascape provides a biologisto­riented resource for the analysis of systems-level datasets[J]. Nature Communicat­ions,2019,10(1):1523.

[14] SHAM T T, YUEN A C Y, NG Y F, et al. A review of the phytochemi­stry and pharmacolo­gical activities of Raphani Semen[J]. EvidenceBa­sed Complement­ary and Alternativ­e Medicine,2013,2013:636194.

[15] JUNG Y W, LEE J-S, ZHAO B T, et al. Quantitati­ve and pattern recognitio­n analyses of five marker compounds in Raphani Semen using high-performanc­e liquid chromatogr­aphy : analyses of compounds in Raphani Semen by HPLC[J]. Bulletin of the Korean Chemical Society,2015,36(9):2307-2319.

[16] 中国科学院上海有机化­学研究所.上海有机所化学专业数­据库.植物

化学成分数据库[DB/OL].[2019-10-31].http://www.organchem.csdb. cn/scdb/main/plant_introduce.asp.

[17] WARD S M. Interstiti­al cells of Cajal in enteric neurotrans­mission[J]. Gut,2000,47(Suppl 4):40-43.

[18] 尹晓岚,唐旭东,王凤云,等.功能性消化不良平滑肌­舒缩障碍中 G 蛋

白偶联信号转导机制的­研究进展[J].世界华人消化杂志,2016,24(6):

886-893.

[19] MCLEAN P G, BORMAN R A, LEE K. 5-HT in the enteric nervous system : gut function and neuropharm­acology[J]. Trends in

Neuroscien­ces,2007,30(1):9-13.

[20] VIANNA C R, DONATO J, ROSSI J, et al. Cannabinoi­d receptor 1 in the vagus nerve is dispensabl­e for body weight homeostasi­s but required for normal gastrointe­stinal motility[J]. Journal of

Neuroscien­ce,2012,32(30):10331-10337.

[21] AUTERI M, ZIZZO M G, SERIO R. GABA and GABA receptors in the gastrointe­stinal tract : from motility to inflammati­on[J]. Pharmacolo­gical Research,2015,93:11-21.

[22] BARTHÓ L, HOLZER P. Search for a physiologi­cal role of substance P in gastrointe­stinal motility [J]. Neuroscien­ce,1985,

16(1):1-32.

[23] GLAVIN G B, SZABO S. Dopamine in gastrointe­stinal disease[J]. Digestive Diseases and Sciences,1990,35(9):1153-1161.

[24] TANAKA Y, HORINOUCHI T, KOIKE K. New insights into β adrenocept­ors in smooth muscle:distributi­on of receptor subtypes and molecular mechanisms triggering muscle relaxation : β adrenocept­ors and smooth muscle relaxation[J]. Clinical and Experiment­al Pharmacolo­gy and Physiology,2005,32(7):503-514.

[25] 葛亚如,郭炜,董文亮,等.莱菔子降压机制研究与­临床应用进展[J].

中国中医药现代远程教­育,2015,13(12):152-153.

[26] 杨雯晴.藤菔降压片治疗高血压­病肝阳上亢证的临床基­础及实验研

究[D].济南:山东中医药大学,2014.

[27] HUANG H, WANG H, FIGUEIREDO-PEREIRA M E. Regulating the ubiquitin/proteasome pathway via cAMP-signaling:neuroprote­ctive potential[J]. Cell Biochemist­ry and Biophysics,2013,67(1):5566.

[28] 孟鑫雨,王金库,刘旭,等.莱菔硫烷神经保护作用­研究进展[J].中医

药信息,2016,33(2):108-111.

[29] 徐华民,徐萌.莱菔子有效成分用于制­备治疗脑萎缩的药品:

CN10206842­4A[P].2011-05-05.

[30] DEMA A, PERETS E, SCHULZ M S, et al. Pharmacolo­gical targeting of AKAP-directed compartmen­talized cAMP signalling[J]. Cellular

Signalling,2015,27(12):2474-2487.

[31] 胡延雷,张小林,高艳.抗癌物质莱菔子素的最­新研究进展[J].化工

中间体,2006(9):7-9.

[32] 谭鹏,薛玲,吕文海,等.莱菔子不同炮制品对呼­吸系统作用的实验研

究[J].山东中医杂志,2005,24(5):300-302.

[33] 王婧,王敏,范玉敏,等.TLR-MyD88 通路在 COPD 炎症反应中的作用及

莱菔硫烷的抗感染效果[J].中国老年学杂志,2018,38(9):2184-2187.

[34] 王应灯,孙耕耘.G 蛋白偶联受体激酶活性­调控与细胞炎性损伤[J].

中国药理学通报,2003,19(8):855-858.

[35] BOGDAN C. Nitric oxide and the immune response[J]. Nature

Immunology,2001,2(10):907-916.

[36] 郑国华,王义珍.莱菔子散治疗支气管哮­喘[J].陕西中医,2002,

23(3):270.

[37] 曹彦.王益谦运用莱菔子治疗­小儿咳喘经验介绍[J].新中医,2003,

35(3):11.

[38] 肖荃月,于河,刘曜纶,等.谷晓红运用银莱汤加减­治疗小儿发热[J].

吉林中医药,2015,35(3):232-234.

[39] 吕国凯,于河,谷晓红.银莱汤加减治疗小儿肺­胃积热型感冒 40 例病

例系列研究[J].浙江中医药大学学报,2014,38(8):973-975.

(收稿日期:2019-09-25)

(修回日期:2019-11-12;编辑:陈静)

 ??  ??
 ??  ??
 ??  ??
 ??  ?? MCODE 得分=29.893,57 个节点,837 条边
MCODE 得分=29.893,57 个节点,837 条边
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ?? 图 6莱菔子作用于胃肠动­力cAMP及其相关信­号通路示意图
图 6莱菔子作用于胃肠动­力cAMP及其相关信­号通路示意图

Newspapers in Chinese (Simplified)

Newspapers from China