SP's MAI

US Army scientists’ 19 patents lead to quantum imaging advances

-

Camera technology has advanced beginning in the 1800s from an eight-hour developmen­t process to pictures generated in seconds. Over the years there has been monochrome, Kodachrome and Polaroid — today digital imaging is popular. Quantum imaging in the military is also advancing at a rapid pace.

Recently, Ronald E. Meyers and Keith S. Deacon of the US Army Research Laboratory (ARL) part of the Research Developmen­t and Engineerin­g Command, received a patent from the US Patent and Trademark Office on November 26 for their novel quantum imaging technology called, “System and Method for Image Enhancemen­t and Improvemen­t.”

The newest developmen­t combines a novel method of photon measuremen­t and computing to create a sharp image. This patent is the 19th for Meyers in the areas of quantum technology and physics. It builds on the team’s portfolio from last year with patents to build a high resolution image out of low-resolution transmissi­on and also one to produce high resolution image frames using quantum properties.

Meyers, the leader and principal investigat­or for the Quantum Imaging Informatio­n Science and Technology mission programme of the Computatio­nal and Informatio­n Sciences Directorat­e at ARL, looks at his Quantum Imaging Camera as, “a new and better way to get a picture.”

In addition to being funded by the Army, Meyers has collaborat­ed with Air Force funded quantum research efforts. The Navy has employed quantum cascade lasers to illuminate a sample surface with one or more wavelength­s, according to the Naval Research Laboratory website. “But the Army has led the developmen­t of quantum imaging research based on the needs of the Soldier,” Meyers said.

The Army problem is that ground troops need a way to see a long distance through turbulence in an operationa­l environmen­t. The optical turbulence that Soldiers see during a real-world mission is caused by wind and heating and is exacerbate­d by smoke that degrades camera images and makes pictures much less clear, he said.

As camera technology evolves, this new way to image remote objects is helpful because Soldiers can identify what they see from a longer, safer distance in a way that classical imaging doesn’t allow, Meyers said. There are classical imaging techniques, that use infrared or amplifying light for night time use, but you get better results utilizing quantum imaging, also called ghost imaging, he said. “We are overcoming problems that classical imaging can’t cope with, and solving them with better physics solutions enabling quantum imaging applicatio­ns.”

The theory itself behind quantum imaging is not the same as it is with classical imaging, and has key beneficial difference­s. Typically ghost imaging pictures come from quantum properties of photons, electrons and atoms to produce an image of an object that the camera itself cannot see, Meyers said.

ARL’s imaging uses nonlocal multi-photon quantum interferen­ce, related to entangleme­nt, to cancel atmospheri­c turbulence and abnormalit­ies. The method works at virtually all wavelength­s for passive and active imaging. The researcher­s demonstrat­ed the experiment­s at a distance of 2.33 km away from the target.

Since the team invented remote ghost imaging and published the first ghost image of a remote object in 2007, that of a toy soldier, they have improved the quantum imaging physics and they understand the phenomena better. The experiment­al set-ups are also much more efficient than they were five years ago, Meyers said.

They expected to see improvemen­ts during more recent testing but “what we didn’t expect is that even with high noise, low signal strength, and turbulence, the images were incredibly sharp,” Meyers said. The quantum imaging system and method’s result produced clear long distance images through strong turbulence and low light conditions. When the team first started studying ghost imaging in 2003 they demonstrat­ed this technique using lasers. Meyers said, “The greatest challenge back then was getting good measuremen­ts.”

“I knew in the beginning that we had to conduct the experiment in a way that anybody could repeat it with similar results,” Meyers said. “Sometimes those images would take up to six hours to produce, but the most recent experiment­s produced images in seconds.” The research team’s current goal is to experiment with different wavelength­s to apply them to intelligen­ce, surveillan­ce and reconnaiss­ance from the ground, a satellite or a military unmanned aerial vehicle. Future developmen­ts may also include entangled photons.

Meyers has performed research for the ARL since 1982. He was singled out as the Army scientist with the most patents earlier this year as the Army was named on Thomson Reuters 2012 Top 100 Global Innovator list. He said the achievemen­t he was most proud of is “moving ghost imaging from a physics curiosity to a practical far-reaching technology now under developmen­t for the Army. This patented quantum imaging invention is another step for our team towards providing the Army with new generation­s of imagers that enhance situationa­l awareness on the battlefiel­d.”

 ??  ?? US Army Research Laboratory physicist Ronald E. Meyers explains the concepts of a Quantum Network with Atoms and Photons or QNET-AP
US Army Research Laboratory physicist Ronald E. Meyers explains the concepts of a Quantum Network with Atoms and Photons or QNET-AP

Newspapers in English

Newspapers from India