The Asian Age

Faster- charging smartphone batteries in the offing: Study

-

Scientists have identified a new class of materials which could be used to make smartphone batteries that charge faster. The researcher­s, from the University of Cambridge in the UK, used materials with a complex crystallin­e structure and found that lithium ions move through them at rates that far exceed those of typical electrode materials, which equates to a much faster- charging battery.

Although these materials, known as niobium tungsten oxides, do not result in higher energy densities when used under typical cycling rates, they come into their own for fast charging applicatio­ns, according to the research published in the journal Nature. Additional­ly, their physical structure and chemical behaviour give researcher­s a valuable insight into how a safe, super- fast charging battery could be constructe­d, and suggest that the solution to nextgenera­tion batteries may come from unconventi­onal materials.

“We are always looking for materials with highrate battery performanc­e, which would result in a much faster charge and could also deliver high power output,” said Kent Griffith, a postdoctor­al researcher in Cambridge’s Department of Chemistry. In their simplest form, batteries are made of three components: a positive electrode, a negative electrode and an electrolyt­e. When a battery is charging, lithium ions are extracted from the positive electrode and move through the crystal structure and electrolyt­e to the negative electrode, where they are stored. The faster this process occurs, the faster the battery can be charged, researcher­s said.

The niobium tungsten oxides used in the current work have a rigid, open structure that does not trap the inserted lithium and have larger particle sizes than many other electrode materials. Griffith suggests that the structural complexity and mixed- metal compositio­n are the very reasons the materials exhibit unique transport properties. “Many battery materials are based on the same two or three crystal structures, but these niobium tungsten oxides are fundamenta­lly different,” said Griffith. The oxides are held open by ‘ pillars’ of oxygen, which enables lithium ions to move through them in three dimensions.

“The oxygen pillars, or shear planes, make these materials more rigid than other battery compounds, so that, plus their open structures means that more lithium ions can move through them, and far more quickly,” Griffith said. Using a technique called pulsed field gradient ( PFG) nuclear magnetic resonance ( NMR) spectrosco­py, which is not readily applied to battery electrode materials, the researcher­s measured the movement of lithium ions through the oxides and found that they moved at rates several orders of magnitude higher than typical electrode materials. Most negative electrodes in current lithiumion batteries are made of graphite, which has high energy density. When charged at high rates, it tends to form spindly lithium metal fibres, it can create a short- circuit and cause the batteries to catch fire. — PTI

 ?? PHOTO: PIXABAY ??
PHOTO: PIXABAY

Newspapers in English

Newspapers from India