Iran Daily

2D materials in devices separate salts in seawater

-

limited in size by the intrinsic roughness of a material’s surface, which is usually at least ten times bigger than the hydrated diameter of small ions.

Earlier this year, graphene-oxide based membranes developed at the NGI attracted considerab­le attention as promising candidates for new filtration technologi­es.

This research — utilizing the new toolkit of 2D materials — demonstrat­es the real-world potential of providing clean drinking water from salt water.

To better understand the fundamenta­l mechanisms behind ion transport, a team led by Sir Andre Geim of The University of Manchester made atomically flat slits measuring just several angstroms in size.

These channels are chemically inert with smooth walls on the angstrom scale.

The researcher­s made their slit devices from two 100-nm thick crystal slabs of graphite measuring several microns across that they obtained by shaving off bulk graphite crystals.

They then placed rectangula­r-shaped pieces of 2D atomic crystals of bilayer graphene and monolayer MOS2 at each edge of one of the graphite crystal slabs before placing another slab on top of the first.

This produces a gap between the slabs that has a height equal to the spacers’ thickness.

Geim explained, “It’s like taking a book, placing two matchstick­s on each of its edges and then putting another book on top.

“This creates a gap between the books’ surfaces with the height of the gap being equal to the matches’ thickness. In our case, the books are the atomically flat graphite crystals and the matchstick­s are the graphene, or MOS2 monolayers.”

The assembly is held together by van der Waals forces and the slits are roughly the same size as the diameter of aquaporins, which are vital for living organisms.

The slits are the smallest size possible since slits with thinner spacers are unstable and collapse because of attraction between opposite walls.

Ions flow through the slits if a voltage is applied across them when they are immersed in an ionic solution, and this ion flow constitute­s an electric current.

The team measured the ionic conductivi­ty as they passed through chloride solutions via the slits and found that ions could move through them as expected under an applied electric field.

Dr. Gopi Kalon, a postdoctor­al researcher who led the experiment­al effort, said, “When we looked more carefully, we found that bigger ions moved through more slowly than smaller ones like potassium chloride.”

Dr. Ali Esfandiar, who is the first author of the paper, added, “The classical viewpoint is that ions with a diameter larger than the slit size cannot permeate, but our results show that this explanatio­n is too simplistic.

“Ions in fact behave like soft tennis balls rather than hard billiard ones, and large ions can still pass — either by distorting their water shells or maybe shedding them altogether.

The new research as published in Science, showed that these newly observed mechanisms plays a key role for desalinati­on using the size exclusion and is a key step to creating high-flux water desalinati­on membranes.

Newspapers in English

Newspapers from Iran