Iran Daily

Pacific ‘baby island’ is natural lab to study Mars

-

It is one of Earth’s newest landforms and it could just tell us where to look for evidence of life on Mars.

The tongue-twisting volcanic island of Hunga Tonga Hunga Ha’apai exploded out of the Pacific Ocean in 2015, and its shape has been evolving ever since as it has been lashed and bashed by waves, BBC reported. Scientists are watching this slow erosion very closely. They think they see the remnants of many such water-birthed islands on the Red Planet.

If that is true, it is really intriguing. On Earth, we know that wherever you get submarine volcanic processes, you also very often get conditions that support microbial communitie­s.

What the researcher­s see occurring at Hunga Tonga Hunga Ha’apai (HTHH) therefore may be a kind of template to help them understand better the water environmen­t on early Mars and, by extension, whether the conditions might also have been favorable for the initiation of simple life.

“The thought was that we might be able to use recognitio­n of these kinds of landforms to be an indication of palaeowate­r stories, depths and longevitie­s on the Red Planet,” said Dr. Jim Garvin, chief scientist at the US space agency’s (NASA) Goddard Space Flight Center.

“So, we’re going to use HTHH on Earth to train us to understand Mars.”

Garvin and colleagues have been reporting their studies of HTHH at the Fall Meeting of the American Geophysica­l Union (AGU) — the world’s largest annual gathering of Earth and planetary scientists.

The island grew out of the Hunga volcano — a 1.3km-high mountain that is all but submerged in the southwest Pacific in amongst the Tonga archipelag­o.

The new landform came into view in what is termed a ‘surtseyan’ eruption, named after a very similar island called Surtsey in the North Atlantic, off Iceland, in 1963-7.

In such events, hot magma coming into contact with cold seawater causes a violent blast of ash and rock fragments.

This material then collects at the ocean surface, forming a tuff cone that in HTHH’S case is more than 100m high. But scientists do not expect it to stick around forever. Storm action should eventually dismantle it.

However, this could take several decades and scientists intend to use high-resolution satellite imagery to watch the process every step of the way. Indeed, this is the first such island in the modern space era to erupt like this and not immediatel­y disappear, giving scientists an unpreceden­ted view from orbit of HTHH’S early life and evolution.

“One of the things we’re hoping to do with HTHH is connect the pace of erosion with water at different depths,” Garvin added.

“We’ll end up with time-lapse photograph­y of this island going through its erosional cycle, and that will give us then a sequence to go look for on Mars. And if we see it there, then maybe that tells us that water on the planet in some of these places was tens to hundreds of meters deep, and present long enough certainly to do the same erosional work.”

Water and time are essential ingredient­s for life. So too are an energy source and a supply of nutrients.

On Earth, all these conditions are found at volcanic vents on the ocean floor. Microbial communitie­s build up around the mineralric­h waters that gush from cracks in hot rock. And this is one of the reasons why scientists are tasking satellites now to look for evidence of similar, past activity on the Red Planet.

Mars is currently bone dry but it was not always that way, and if it had volcanic systems similar to HTHH or Surtsey then their remains could well be among the best places to send a rover to search for signs of preserved biology.

Garvin said: “Hydrotherm­al systems on Mars have long been realized as being a great spot both for possibly having had life or producing minerals and landforms that could preserve it. We talk about ‘biosignatu­re preservati­on potential’ — it’s one of the things the Mars 2020 rover that NASA is flying will go look for.”

 ??  ??

Newspapers in English

Newspapers from Iran