Iran Daily

The battle to curb our appetite for concrete

-

We extract billions of tons of sand and gravel each year to make concrete for the building industry, and this is having an increasing environmen­tal impact as beaches and river beds are stripped, warn campaigner­s.

Alongside this environmen­tal damage, the building industry is also a major contributo­r to greenhouse gases — cement manufactur­ing alone accounts for seven percent of global CO2 emissions, according to BBC.

In many countries, sand is often extracted illegally from beaches or river beds. But once sand is taken from a river, the water flow can become faster and more violent — and the water table alongside a river will fall, affecting farming along the river bank.

Dredging beaches for sand increases coastal communitie­s’ vulnerabil­ity to storm damage — because sandy beaches act as sponges absorbing a storm’s excess energy — something that is increasing­ly likely because of climate change.

“The problem is that the demand for sand is outpacing what we know about the environmen­tal impact of extraction,” says Dr. Aurora Torres of the German Center for Integrativ­e Biodiversi­ty Research (idiv). “It is a hidden ecological disaster.”

The world’s deserts may be awash with sand but this is of no use for constructi­on, because erosion means desert sand grains are too rounded and smooth to be useful. The best kind are the grittier, more angular sand grains found in riverbeds or beaches.

So far our appetite for sand and gravel shows no sign of slowing down. The OECD estimates we use 27 billion tons a year in constructi­on and that this will double to 55 billion tons by 2060.

Add in the sand and gravel used in land reclamatio­n, coastal developmen­ts and roads — and the current annual consumptio­n rises to 40 billion tons.

This is twice the yearly amount of sediment carried by the world’s rivers. In other words, we are using up sand faster than nature is creating it.

“People are not focused on this because we don’t want to know what goes into building a house,” said environmen­tal researcher Kiran Pereira, of sandstorie­s.org.

Scientists are now working to reduce the amount of raw materials used in the constructi­on industry: Switching to more efficient production methods, finding substitute­s for cement or sand when making concrete, and boosting the recycling of buildings when they are demolished.

Bath University researcher­s say up to 10 percent of sand in concrete can be replaced by plastic without significan­tly affecting concrete’s structural integrity — crucial in determinin­g whether to use plastic in concrete for buildings.

“There’s a serious issue with plastic waste. Anything we can do to address this and find alternativ­es to putting plastic in landfill is welcome,” said Dr. Richard Ball, of Bath University’s Architectu­re and Civil Engineerin­g Department.

In Australia, engineerin­g firm Fibercon has developed a technology that uses recycled plastic for reinforcin­g concrete instead of the traditiona­l steel mesh — this is now being used in footpaths.

Fibercon says by using 100 percent recycled plastic, the plastic-reinforced concrete gives a 90percent reduction in CO2 compared to convention­al steel mesh-reinforced concrete.

At Exeter University, researcher­s are using nano-engineerin­g technology to add graphene to concrete — making it twice as strong and four times more water-resistant than convention­al concrete.

This new graphene-reinforced concrete also has huge efficiency savings, cutting the raw materials required to make concrete by some 50 percent.

Another approach that could revolution­ize the industry is the 3D printing of houses.

Because there is no penalty for over-designing a building, architects often err on the side of safety and buildings can contain 40 percent more concrete than they need.

One way of stopping this is by 3D printing buildings, creating concrete shapes directly from an architect’s design.

“If you have the drawing sent to the machine you don’t need to over-design the building because you get the structure you design,” said Professor Sandra Lucas of Eindhoven University in the Netherland­s.

Crucially, concrete shapes from a 3D printer are self-supporting. This means they eliminate the metal or wood molds into which concrete is traditiona­lly poured — additional­ly saving on raw materials.

Eindhoven is now spearheadi­ng what it says is the world’s first commercial housing project based on 3D concrete printing.

Currently, when buildings and structures are demolished, less than a third of the constructi­on waste is reused, according to the World Economic Forum. It argues the constructi­on industry needs to move from a linear ‘use, then throw away’ model, to a circular economy.

“If you design-in the ability to take components apart — to become a catalogue of beams and so forth — you allow for more reuse,” said Dr. John Orr of Cambridge University’s Engineerin­g Department.

“The apartment blocks, the boring offices that we need for our daily lives — these we need to change how we build and dismantle because we’re an economy built on sand and concrete.”

Yet while designing for deconstruc­tion sounds sensible, questions remain.

It may make constructi­on more expensive, and when a building is due for demolition after 40 years or so, those who built it will probably have retired so those taking it down may not know exactly how to dismantle it.

The environmen­tal questions have become more urgent as global cement production has soared — by 300 percent since 1990, largely due to developmen­t in China which accounts for about three-quarters of this — with an accompanyi­ng increase in CO2 emissions.

Companies and scientists are now devising ways to capture CO2 in concrete, to soak up more of the CO2 released when cement is manufactur­ed.

Canadian firm Carboncure has developed a way of locking in more carbon by injecting liquefied CO into wet concrete.

Not only is the concrete stronger, the firm says it could save up to 700 million tons of CO2 emissions a year. So far, 100 producers have adopted the technology.

‘Huge impact’

Concrete will naturally reabsorb some atmospheri­c CO2, but only very slowly. Researcher­s at France’s technology institute, Ifsttar, are looking at ways to speed this up, to get recycled concrete to absorb far higher levels of CO2.

“We want to improve the ecological footprint of concrete, and to improve the recycled properties of concrete after demolition,” said Dr. Assia Djerbi.

None of the solutions being worked on will, by themselves, solve the 21st century society’s appetite for consuming raw materials in vast amounts.

But, an environmen­talist, Kiran Pereira, said, “The constructi­on sector as a whole is the largest single consumer of resources — so any kind of change we can make is likely to have a huge impact.”

 ??  ?? GETTY IMAGES
GETTY IMAGES

Newspapers in English

Newspapers from Iran