The Borneo Post (Sabah)

Ensuring deadly viruses don’t get rebuilt

- By Rebecca Spalding

GENETIC engineerin­g could help produce more resilient crops and more effective vaccines. Some fear that it could also be used to make a biological weapon.

In January, a small research team at the University of Alberta engineered a cousin of the lethal smallpox virus called horsepox, using strands of DNA they received in the mail. The organism that they built wasn’t a threat to humans.

But when the scientists published their findings in scientific journal PLOS ONE, an uproar ensued.

The study’s publicatio­n “crosses a red line in the field of biosecurit­y,” wrote Gregory Koblentz, a professor in the biodefence department at George Mason University, in a public comment to the journal. “The synthesis of horsepox virus takes the world one step closer to the re-emergence of smallpox as a threat to global health security.”

For years, bioethicis­ts and security experts have debated whether those closely guarded samples should be destroyed.

To help curtail the threat, the US intelligen­ce community, which has been tracking the potential for new biological technology to be used for nefarious ends for years, is working with a Bostonbase­d company, Ginkgo Bioworks, that makes some of the most innovative genetic products in the world to help prevent a new class of dangerous biological weapons from ever being built.

“We became concerned about engineered pathogens in the 1990s” said Andy Weber, a former assistant secretary of defence for nuclear, chemical and biological defense programs in the Obama administra­tion. He now advises the private sector, including Ginkgo. “Frankly the science has caught up to these concepts.”

Using a technology called synthetic biology, a marriage of biology and engineerin­g that allows researcher­s to construct genes in a lab, a scientist could theoretica­lly make present- day illnesses more virulent or drug-resistant, or revive longeradic­ated ailments such as bubonic plague or the Spanish flu. The fear is, without proper oversight, this could be done using genetic material acquired online. That possibilit­y has made people who track emerging security threats sit up and take notice. They worry that such innovation­s could be used to make a biological weapon.

Preventing a potential attack isn’t as simple as monitoring a list of outlawed pathogens, which would be flagged under current screening methods. It’s possible to order smaller components of a longer genetic sequence and then reassemble them in a lab to build a harmful biological agent, whether by design or by accident. There is also a fear that novel sequences could be created that would mimic the functions of harmful pathogens, but that could evade current methods.

The horsepox episode “suggests that there are risks that are present today,” said Jason Matheny, Iarpa’s director. “If someone is technicall­y sophistica­ted and dedicated, someone could do a lot of damage.”

To improve screening, Iarpa officials started a programme that contracted with researcher­s from the Battelle Memorial Institute, a Columbus, Ohio-based research group, Harvard University, Virginia Tech and others to create advanced algorithms that could flag and prevent harmful DNA orders from being completed.

In order to understand which genetic combinatio­ns might be harmful before they’re ever made in a laboratory, the Iarpa-led programme brought in Ginkgo, which will develop algorithms that can predict which genetic sequences, even unknown ones, could potentiall­y cause harm. Called Fun GCAT, an acronym for Functional Genomic and Computatio­nal Assessment of Threats, the programme is seeking to create algorithms that would predict how genetic sequences are meant to function before they’re ordered, even if the combinatio­n being studied is new and not seen in nature.

Ginkgo designs organisms using genetic data, coding them in much the same way computers are programmed. The company is designing microbes that can live on the roots of plants and produce nitrogen, reducing the need for chemical fertiliser in some farming. It’s also working on coding microbes that produce rose oils for perfumes, no roses required. Synthetic biology has advanced rapidly. Ginkgo Chief Executive Officer Jason Kelly, 37, said that when he was a graduate student studying biological engineerin­g at the Massachuse­tts Institute of Technology in the mid-2000s, he designed about 50,000 base pairs-the term for the two correspond­ing units of DNA that make up a rung of the genetic ladder.

Now, Kelly says, his company can design roughly 50 million pairs a month, thanks to faster and cheaper sequencing techniques. Being able to generate so much genetic material may mean being able to rapidly develop vaccines to respond to new pathogens or prototype experiment­al medication­s more quickly, according to the company.

“The rate that you can learn is just dramatical­ly higher. There’s just no comparison,” he said.

Gingko quickly saw the potential security risks in its work. It began working with Weber, the former Obama administra­tion official, in 2016 to get advice on how to best preserve national security.

“We are doing more of this genetic engineerin­g than anybody, we think we’re going to get better at it than anybody, so we have a responsibi­lity to be keeping our eye on both sides of that coin,” Kelly said. — Bloomberg

We are doing more of this genetic engineerin­g than anybody, we think we’re going to get better at it than anybody, so we have a responsibi­lity to be keeping our eye on both sides of that coin. – Jason Kelly, Ginkgo Chief Executive Officer

 ??  ?? Jason Kelly, co-founder and chief executive officer of Ginkgo Bioworks Inc., at the company’s facility in Boston. — Bloomberg photos by Scott Eisen
Jason Kelly, co-founder and chief executive officer of Ginkgo Bioworks Inc., at the company’s facility in Boston. — Bloomberg photos by Scott Eisen
 ??  ?? An automated fermenting machine is seen at the Ginkgo Bioworks Inc. facility.
An automated fermenting machine is seen at the Ginkgo Bioworks Inc. facility.
 ??  ?? An automated inoculator machine is seen at the facility.
An automated inoculator machine is seen at the facility.

Newspapers in English

Newspapers from Malaysia