The Borneo Post

Testing parts 3-D printed in space for NASA

-

BIRMINGHAM, Alabama: Could 3-D printers transform the Internatio­nal Space Station into a manufactur­ing hub and one day function as the heart of an ondemand machine shop in space that enables NASA to mount crewed missions deep into the solar system?

Engineers at Southern Research are helping NASA’s Marshall Space Flight Centre explore the capabiliti­es of additive manufactur­ing technologi­es that have major logistics implicatio­ns for the nation’s ambitious future space missions.

“When NASA sends a crew to Mars, there can’t be a resupply mission. There is just no way to send them replacemen­t parts if equipment breaks or a part fails in deep space,” said Madison Parks, an advanced mechanical engineer in Southern Research’s Engineerin­g division.

“On a mission to Mars, a 3-D printer will have to go with the crew. A part failing in orbit can be replaced after a resupply mission, but a resupply mission to a craft on the way to Mars would be too costly and may result in a loss of the mission. The crew will need to be entirely self-sufficient,” he added.

Parks is working with Marshall’s engineers to come up with an answer to a critical question facing NASA’s plans for space-borne three-dimensiona­l printing: Are parts manufactur­ed in zerogravit­y going to behave just like those produced on Earth-bound 3-D printers?

The ISS is already equipped with a 3-D printer. In 2014, California-based Made in Space sent a polymer printer to the station, followed two years later by a more advanced device. It’s been used to print plastic tools used around the station, along with other non mission-critical items.

To help NASA understand the properties of materials printed in an in-space 3-D polymer printer, Parks and his team are testing specimens of materials printed in space and comparing them to similar specimens produced on Earth.

Along with tension and compressio­n tests on these materials, Southern Research will be performing digital image correlatio­n (DIC). DIC is a non-contact optical method that employs tracking and image registrati­on techniques for accurate 3-D measuremen­ts of changes on the surface during a mechanical or thermal loading.

Measuring full-field displaceme­nts and strains during the mechanical tests will help engineers understand the material behaviour and overall effect of print passes and how they relate to zero-gravity 3-D printing versus Earth 3-D printing.

“For safety reasons, NASA has to understand the materials before they use them,” Parks said. “You have to understand where and how these parts, which are manufactur­ed in space, can be used. Doing otherwise could lead to parts and systems failing prematurel­y.” — Newswise

 ??  ?? Madison Parks, an advanced mechanical engineer at Southern Research, is working with NASA’s Marshall Space Flight Centre on a project to test objects 3-D printed in space. — Photo by Peyton Shepard, Southern Research
Madison Parks, an advanced mechanical engineer at Southern Research, is working with NASA’s Marshall Space Flight Centre on a project to test objects 3-D printed in space. — Photo by Peyton Shepard, Southern Research

Newspapers in English

Newspapers from Malaysia