The Star Malaysia - Star2

Cassava flour’s breadmakin­g potential

Cassava or tapioca flour could partially replace wheat flour in bread, say experts.

- By ELTON ALISSON

IN coming decades, the rise in global temperatur­es owing to climate change may hinder the production of wheat in many regions where the crop is grown today. The raw material for bread, one of the world’s most consumed foods, may become scarce and more expensive as a result.

Cassava or tapioca flour could partially replace wheat flour in bread, particular­ly in Africa and Latin America, but its baking properties are poor compared with those of wheat flour, according to experts.

“Cassava flour isn’t as good as wheat flour for bread production,” said Leif Horsfelt Skibsted, a professor in the Food Science Department of the University of Copenhagen, Denmark. “It contains more starch and less protein, including gluten. Also, it absorbs more water. All these factors probably explain its relatively poor baking properties compared with wheat flour. This is a major challenge to its use in bread.”

To surmount this limitation, Skibsted has worked with colleagues at Aarhus University and Danish companies Easy Foods and Novozymes on a series of studies designed to use enzymes to improve the baking properties of cassava flour in breadmakin­g.

The studies were performed as part of the project “Bread and meat for the future”, supported by FAPESP and Innovation Fund Denmark.

Some results of the studies were presented at an event held at the end of August 2017 at FAPESP’s headquarte­rs in Sao Paulo to celebrate the outcomes of its cooperatio­n with Danish agencies.

“The purpose of the project was to find out whether cassava flour could be used in the sustainabl­e production of bread,” Skibsted said in his presentati­on.

The researcher­s began by estimating the extent to which cassava flour could substitute for wheat flour in a loaf of bread without impairing its texture, aroma, flavour and colour in comparison with bread made only with wheat flour.

The results of the analysis, detailed in an article published in the journal LWT – Food Science and Technology, indicated that depending on the type, cassava flour could replace between 20% and 30% of the wheat flour typically used to make bread without significan­tly altering its sensory characteri­stics and without impairing the leavening process that makes the dough rise.

“Above the 30% limit, the appearance, texture and taste of bread made with a mixture of wheat and cassava flour start to display difference­s compared with bread made with wheat flour alone,” Skibsted said.

However, cassava flour did affect properties of the dough such as viscosity and retrograda­tion (crystallis­ation of starch molecules) after cooling, both of which increased compared with wheat only.

According to Skibsted, this may have been due to lack of gluten, difference­s in the compositio­n of the starch fraction in cassava flour compared with wheat flour, and limited activity of the enzyme amylase in cassava flour.

Enzymatic enhancemen­t

To see if these adverse effects of cassava flour could be lessened, the researcher­s tested whether the various enzymes used by the industry today would enhance the sensory properties and alter the structural characteri­stics of bread made with up to 30% cassava flour.

Baking enzymes are used by breadmaker­s to enhance volume, crust colour and freshness, among other qualities, but hitherto had been tested only in wheat dough.

By fragmentin­g polysaccha­rides such as starch, alpha-amylase helps increase bread volume with the same amount of ingredient­s and enriches the colour of the loaf. Amylase also breaks down starch into short dextrin chains (lowmolecul­ar-weight carbohydra­te) to catalyse the action of yeast.

Xylanase increases loaf volume by improving the solubility of hemicellul­ose (another polysaccha­ride) in water. It helps bind water and dough to boost volume and produce a finer, more uniform crumb structure.

“Our goal was to test different enzymes in order to try to identify the best solution for the production of bread using cassava and wheat,” he said.

In their first study the researcher­s tested the effects of fungal and maltogenic alpha-amylase, xylanase, lipase, laccase (polyphenol oxidase) and glucose oxidase in bread made with wheat and 30% sour cassava starch, which without enzymes displays less volume, a coarser texture and smaller crumb pores.

The results of the study, published in the journal European Food Research and Technology, showed that glucose oxidase had no effect on bread quality, while alpha-amylase clearly enhanced sensory characteri­stics and physical structure. Lipase increased loaf volume by ensuring better retention of carbon dioxide gas in dough, and laccase made the bread softer.

The best results, however, were obtained by using xylanase. “This enzyme enhanced loaf structure and texture by making the dough more malleable,” Skibsted said.

In a later study, also published in European Food Research and Technology, the researcher­s evaluated the individual and combined effects of the addition of water with xylanase and water with laccase on the quality of bread made with 70% wheat flour and 30% cassava flour.

Their analysis showed that an increase in added water combined with xylanase resulted in a loaf with more volume. “The bread was also softer and its structure more uniform,” Skibsted said.

In another study published in the same journal, the researcher­s set out to see whether the components of wheat flour could activate enzymes to enhance the characteri­stics of bread in which cassava flour replaced part of the wheat flour. They found that an unknown heat-resistant element in wheat increased the activity of the xylanase.

“This finding opens up a prospect of using enzymes more rationally to enhance bread quality, especially when a combinatio­n of starch sources is used, as in the case of blends of wheat and cassava flour,” Skibsted said. – Agencia FAPESP

 ??  ?? Two varieties of cassava, the root vegetable of a woody shrub, Manihot esculenta, also known as tapioca, manioc, yuca, and Brazilian arrowroot. — CIAT Internatio­nal Center for Tropical Agricultur­e/ VisualHunt.com
Two varieties of cassava, the root vegetable of a woody shrub, Manihot esculenta, also known as tapioca, manioc, yuca, and Brazilian arrowroot. — CIAT Internatio­nal Center for Tropical Agricultur­e/ VisualHunt.com

Newspapers in English

Newspapers from Malaysia