Idealog

The augmented workforce

Anna and Kelly Prendergas­t explore t he f uture of exosuit use i n New Zealand

-

From the i conic Power Loader suit worn by Sigourney Weaver in Alien to the more recent depiction of Robert Downey Jr. flying around in armour as Iron Man, Hollywood has long used exosuits to transform ordinary humans into augmented, super- powerful beings who save the world. But Hollywood glitz and glamour aside, exosuits are proving to be an incredibly useful edition to workforces around the world, from rehabilita­tion to manual labour. So, what has the uptake for this once-fictitious innovation been like in New Zealand? And how can we as a country shape the future use of them to benefit as many people as possible? Anna and Kelly Pendergras­t investigat­e.

If you ever find yourself in a hand-to-hand combat situation with a malicious alien species, your puny human body is likely to take a beating. Science fiction teaches us that we’re more likely to survive interplane­tary warfare if we gird our weak flesh with some heavy duty wearables. Enter: the exosuit. An exosuit or exoskeleto­n is a piece of high-tech scaffoldin­g or mechanical armour that enhances the ability of its wearer.

In Ridley Scott’s Aliens, Sigourney Weaver’s Ellen Ripley fights the Xenomorph Queen while wearing Power Loader, an exosuit designed as a wearable forklift for loading cargo on and off spaceships.

More recently, 2014’s Edge of Tomorrow features Tom Cruise as the less-than-memorably named Major William Cage slowly mastering the a weaponised exosuit that helps him stand up to those alien bullies. The suit is initially painful and clunky for Cage, but through much practice and repetition, the exosuit becomes an extension of his body, providing extra strength, firepower and assistance in kicking alien ass.

This year, exosuits are starting to bleed their way into public consciousn­ess beyond the cinema screen, as science fiction becomes science fact.

The Ford Motor Company and BMW both made significan­t investment­s in commercial exosuits for their factory workers in the past year, equipping them with mechanical arm and shoulder supports that look like they could be ripped from the movies.

Other companies in the United States and beyond are starting to follow suit, upping the demand for these futuristic­looking devices. Is this a case of life imitating art?

Not really. As Donna Haraway, author of the influentia­l A

Cyborg Manifesto writes, “the boundary between science fiction and social reality is an optical illusion”. If you can imagine it, it’s probably in developmen­t. Exosuits, both powered and unpowered, have been a real-world phenomena for over half a century now.

In the late 1960s, General Electric – funded by the US military – developed the Hardiman, a powered exoskeleto­n that enabled its wearer to lift over 630kg. The suit bears some visual similariti­es with Ripley’s Power Loader, enveloping its wearer with largerthan-life rigid metal appendages.

The Hardiman ultimately proved unsuccessf­ul, as its violent uncontroll­able motion meant it was never turned on with a person inside.

This huge machine contrasts quite starkly with more recent military exosuits like Lockheed Martin’s Onyx, a lower body powered exoskeleto­n that resembles a souped-up harness and leg brace combo. Unlike the Hardiman, which aimed to give the wearer super-human strength, the Onyx and its recent predecesso­rs are more modest in their goals, aiming to help soldiers carry more weight over longer distances and uneven terrain.

Closer to home, one New Zealand company has been a quiet pioneer in exosuit developmen­t, but for a very different purpose. Rex Bionics and its namesake exosuit, the Rex,

If you can imagine it, it’ s probably in developmen­t. Exosuits, both powered and unpowered, have been a real- world phenomena for over half a century now.

focus on rehabilita­tion for people with mobility impairment­s and neurologic­al conditions.

Robert Irving co-founded Rex Bionics after receiving a multiple sclerosis diagnosis and realising that “the chances of a wheelchair in my future were pretty high”.

Initially looking to create a set of ‘robotic legs’, Irving, with his co-founder Richard Little, spent years creating a prototype, before finding investors and launching Rex Bionics.

After trials, it became clear that the Rex was even more beneficial in a rehabilita­tion context than as a day-to-day wheelchair replacemen­t. Ten years later, the self-moving computeris­ed lower-body robotic suit found can be found in rehab facilities in a number of countries including New Zealand, Australia and the United Kingdom.

The impressive results from n euro physiother­apy trials show, says Irving, “what the brain and body can actually do for itself if it’s primed in the correct way". Instead of functionin­g as ‘robotic legs’, the Rex provides a more complex model of human-machine interactio­n that augments the user’s existing abilities while helping their body to strengthen or heal.

For most of us civilians, the worlds of high-tech warfare and futuristic rehabilita­tion exosuits are unlikely to have much impact on our daily experience. The Rex has great possibilit­ies for people with neurologic­al conditions, a vital service but one that is focused on a specific segment of the population.

And while Ripley facing down the Alien Queen in her Power Loader suit is a scene for the ages, the need to undertake alien-human combat seems like an improbable fate for most of us. But let’s not leave Ripley just yet.

The real impact of exosuit technology is likely to be closer to the Power Loader’s original purpose: to help humans load heavy cargo all day without getting tired or injured. Beyond the battlefiel­d and the rehabilita­tion centre, exosuits are on the verge of entering our workplaces, in a big way. Sexy? Not really. Life changing? For sure.

Industrial exosuits have been in the works for years. But

The real impact of exosuit technology is likely to be closer to the Power Loader’s original purpose: to help humans load heavy cargo all day without getting tired or injured.

as with defence and medical exosuits, it’s taken time and iteration to iron out the kinks. Figuring out weight to strength ratios, ensuring wearer comfort and finding a palatable price point have been complex tasks, keeping exosuits from entering the mass market until recently. But now, the tide may finally have turned: in the past 18 months, both BMW and Ford made significan­t purchases of EksoVest upper body exosuits for use by their auto-assembly workers.

Ford announced its exosuit investment in a high profile August press release, stating that they were introducin­g the devices to 15 plants worldwide, following earlier testing. These nonpowered exosuits, developed by San Francisco Bay Area company Ekso Bionics, elevate and support workers’ arms while they work on tasks at chest height or above.

Car assembly is a labourinte­nsive task, with many workers lifting their hands above head-level over 4,600 times a day, leading to discomfort, strain, or injury for many. Ford’s initial purchase of 75 EksoVests might seem like small potatoes given Ford’s many

thousands of employees.

However, the public announceme­nt (and its resulting 26 percent increase in stock prices) was a signal that some big companies are ready to jump on the exosuit bandwagon. With the combinatio­n of improved technology and public corporate commitment­s, researcher­s and industry experts predict a major surge in exosuit popularity over the next few years.

As exosuits start to find their way into manufactur­ing and industry settings across the world, they’ve been slower – with the exception of the Rex – to find their way into New Zealand workplaces.

Word is getting out, though, and New Zealand businesses are starting to consider their potential. In July, Berkeley-based exosuit pioneer Dr Homayoon Kazerooni presented on exosuits and disruptive technologi­es to delegates at WoodTech, an Australasi­an timber and wood industry conference.

Kazerooni’s talk stirred up some interest, with at least one mill operator saying they could see health and safety uses for the exosuit in their plant. Nathan Stantiall of Callaghan Innovation, the government’s innovation agency, predicts that we’ll see non-powered exosuits, such as those made by Kazerooni’s company SuitX, having multiple applicatio­ns in New Zealand in the near future.

But Stantiall is quick to note that technology shouldn’t be adopted for the sake of it: “tech for tech’s sake” is likely to fail. But when there’s a problem in need of a solution, he says, “you can’t lose”.

Ford Motor Company, early adopters of industrial exosuits, have always been concerned with solving problems, especially as they relate to worker efficiency. Founder Henry Ford invented the modern assembly line, pioneering and refining industrial auto production at the beginning of the 20th century, enabling unskilled workers to produce complex goods using specialise­d tools and repeated tasks.

Endless industrial refinement didn’t end with Ford and his cohort. From the burger production line of McDonald’s to the sterile workshops of Foxconn, companies continue to tweak and modify worker’s physical movements for economic gains. Three-and-a-half swirls of special sauce. A new power drill 40 grams lighter than the previous version. Into this landscape, the exosuit could look like just another tool to eke out more productivi­ty.

Indeed, affordable industrial exosuits promise to augment worker bodies and allow workers to produce more, better, and faster. Increasing productivi­ty is no small matter, as Callaghan Innovation’s Stantiall points out, especially with New Zealand’s low labour productivi­ty in comparison with other OECD countries.

What makes exosuits unusual is that they offer a solution that may be good for workers as well as for the owners of the means of production. While industrial standardis­ation and process refinement resulted in massive productivi­ty gains, it came at a cost.

Human bodies aren’t designed to lift the same tool overhead thousands of times a day, week after week. Strain, discomfort, and worker injuries were the flipside of the 20th century manufactur­ing boom.

According to their creators, industrial exosuits offer a respite for worker bodies by reducing strain and harm from repeated movements. Of course, exosuits may displace strain from one part of the body to another, but ongoing iteration and ergonomic assessment­s should mitigate risk of harm and ensure any load transfer goes to the places on the body that are designed to carry it.

While fewer worker injuries would be undoubtedl­y good for companies, resulting in reduced insurance rates and fewer workers out sick, they could also make life better for workers.

Away from the factory floor or the constructi­on site, the endurance and ease offered by exosuits could allow employees an increased quality of leisure time. Exosuit-equipped workers at Ford affirm this claim, saying they now have “more energy to play with my grandsons when I get home” or fewer aches and pains.

Kazerooni is insistent that improved quality of life is the core promise of exosuits. Across society, Kazerooni sees an increased focus on quality of life, and he wants to ensure the

working class aren’t left out of this equation.

“I have a soft spot in my heart for workers,” he says. They put their bodies on the line “in sometimes inhumane environmen­ts,” working eight to ten hours a day, creating profit for their employers.

In a world where technology and advanced logistics promise to deliver a dazzling array of consumer products directly to our doorstep almost instantane­ously, it’s important to remember that human labour still undergirds these seemingly-magical systems.

“There’s a lot of tears and blood in moving around these boxes,” says Kazerooni.

As long as we desire convenient access to consumer goods and ever-increasing productivi­ty rates, it seems like a no-brainer to ensure we’re also respecting the health of the bodies that make our economy possible.

As New Zealand strives to diversify its economy and forge its way through the rapid transition­s of the 21st century, technologi­es like exosuits offer a new lens for innovation.

They show how we might increase productivi­ty while also caring for the workers that drive our industries, and help us ensure a human-centered transition to an increasing­ly automated future.

But why bother investing in exosuits for workers when the entire future of work is so uncertain?

The fourth Industrial Revolution is upon us, says Dr Amy Fletcher, who works on science and technology issues at the University of Canterbury. She says we’re entering an era where “humans and machines, bio and cyber systems, are going be merging and cooperatin­g”.

According to Callaghan Innovation’s prediction, up to 140,000 New Zealand manufactur­ing jobs are likely to be automated, resulting in job loss for some and dramatical­ly different work tasks for others.

With automation taking over some tasks previously performed by manual labourers, and artificial intelligen­ce (AI) taking over other tasks previously performed by white collar informatio­n workers, the workforce of the future is undoubtedl­y going to look very different. In this context of uncertaint­y, paying to equip labourers with cyborglike exosuits might seem like an unnecessar­y expense and learning curve.

Dr Kazerooni doesn’t think so. Despite the excitement around automation technology, it takes time for technologi­es to develop into market-ready products, and in some industries we’re a long way from automation being a viable option.

“Robotic devices are going to be useful in very structured jobs,” he says, especially where extreme precision is required or the environmen­t is dangerous for human workers. But “if you put a robot in an unstructur­ed environmen­t, it’s just ridiculous”.

The AI isn’t there yet. Humans, on the other hand, “are adaptable, they can make good decisions”, and can handle emergency situations. While automation and AI will eventually be developed to carry out many more dynamic tasks, there is still labour to be done in the meantime, while other roles are likely to remain human-led.

And as for the humans in question, Kazerooni argues that “you might as well equip people with more strength” with exosuits and other devices so they can work more efficientl­y and safely.

A number of New Zealand’s core industries have complex or unstructur­ed work settings which will make full automation difficult, including farming, constructi­on, and forestry.

These jobs could be candidates for the introducti­on of exosuits, particular­ly where repetitive strain injury and worker discomfort is a risk.

Shearers (some of whom already employ a low-tech form of support harness) could be equipped with back and thigh exosuits, reducing the strain from bending and lifting all day. Foresters might use an arm and shoulder support similar to the ones currently in use in automotive factories, to make it easier to lift and manoeuvre a heavy chainsaw.

For industries that provide engaging and varied work but have a reputation for backbreaki­ng labour, exosuits might be a way to attract new entrants to the field.

Some of these manual jobs might be headed for increased automation in the long run, but in many cases the work is meaningful and enjoyable or requires human empathy, and automation might not be the ideal end goal.

Of course, it’s not just about exosuits. In this time of workforce flux, there are a myriad of ways that machines and humans might work together to improve quality of life, working conditions, and productivi­ty.

This symbiotic relationsh­ip between humans and machines ranges across a spectrum. On the one end, devices that supplement or replace the human body (like cobots), through body augmentati­on like exosuits in the middle, to technologi­es

In a world where technology and advanced logistics promise to deliver a dazzling array of consumer products directly to our doorstep almost instantane­ously, it’ s important to remember that human labour still undergirds these seemingly- magical systems.

that support or supplement the human mind on the other end (like AI and augmented reality).

Looking at New Zealand companies and workplaces, we can already see a variety of innovative technology applicatio­ns that show the full spectrum of these interactio­ns.

Cobots – or collaborat­ive robots – are, as the name suggests, robots that are specifical­ly designed to work alongside humans. They’re being integrated into a variety of workplaces, both here and overseas. Unlike earlier generation­s of robots that had to be inside cages or away from humans, cobots are safer and less disruptive to mixed humanrobot workflows.

Callaghan Innovation supports the introducti­on of cobots, especially for tasks that are “dumb, dirty or dangerous,” the ‘3 D’s’ that are often pointed to as prime candidates for automation.

In some cases, the person who previously performed the tasks taken over by a cobot will be retrained to become the fulltime handler or programmer for the cobot. Cobots aren’t just for the manufactur­ing space, however.

Dr Fletcher pinpoints the health sector as another area where we will see more machines interactin­g with humans, especially for eldercare. Companion robots can assist their elderly charges with movement and exercise, recording health data, and of course, “robots never forget that you need to take your medication”.

At least one study has already been carried out in New Zealand to see whether robots can improve healthcare outcomes for elderly people, with early indication­s showing that patients were pretty thrilled with their new companions.

Closer to the brainenhan­cing side of humanmachi­ne interactio­n, Callaghan Innovation’s Stantiall says augmented reality (AR) is another place where there’s lots of opportunit­ies for humans and machine to work together.

Unlike exosuits or cobots, where machines physically support people, AR provides the user with a layer of informatio­n over the “real world”.

Its potential applicatio­ns are broad, from providing realtime instructio­ns for fixing or assembling complex machinery to helping kitchen staff put the perfect number of pickles on a burger.

While there have been attempts to bring AR into the mainstream to limited success (here’s looking at you, Google Glass), it appears to be getting more traction in workplaces. In early October, over $16 million in funding was awarded for a multi-stage project that will see augmented reality enter the New Zealand horticultu­re world.

The University of Aucklandle­d project aims to increase productivi­ty in vineyards and orchards, where there are often labour shortages. The first stage includes equipping new vineyard workers with AR glasses that would train them in best practices for pruning and other skills, based on data collected from expert pruners.

How can New Zealand encourage more focus on robotics and technology that enhances the wellbeing of all Kiwis?

New Zealanders have a reputation for being innovative, and our small population and receptiven­ess to technology has made the country a frequent testing ground for new technologi­es or ways of doing business.

Rex Bionics’ Irving has seen firsthand how innovative New Zealanders can be.

“About 95 to 96 percent of the [Rex] machine is made in New Zealand,” he says, and many of their suppliers have worked with them since the beginning.

“If you look around you can get people to make things. There’s an awful lot of skill and talent, a willingnes­s to figure it out.”

With New Zealand’s much-celebrated number eight wire mindset and appetite for trying new things, what else does New Zealand need to be a world leader in human-centred technologi­cal innovation?

For Dr Fletcher, more investment in science and technology is key.

“You’ve got a really good education system, you’ve got a lot of creative, innovative people. It seems to me that there’s got to be more investment.”

She points out that relative to most countries in the OECD, New Zealand is lagging behind.

Fletcher says it’s is not just the public sector’s responsibi­lity, adding that “a venture capital industry that’s willing to take a bit more risk would be a good thing”. But even in a limited investment ecosystem, there are opportunit­ies for businesses to innovate.

Callaghan Innovation’s Stantiall’s advice is to “think big, start small and fail fast”.

He says that implementi­ng new technologi­es in small packages can mean less capital investment while enabling businesses to build confidence as they’re adapting the way they work.

Of course, even if businesses are ready to make investment­s in new technologi­es, it’s employees who will have to work alongside them, and potentiall­y learn new ways of doing things as they go.

So, it’s important that

Other workplace technologi­es hold out the promise of automation that replaces bodies (like industrial robotics), or brains (like AI ). The exosuit is perhaps a more humanist technology, which appears cyborg-like but has more in common with the wheelchair or the pacemaker than I ron Man.

businesses support their people, and help them develop the skills needed to work in a changing environmen­t.

Dr Fletcher thinks it’s vital for education to keep up with the changing landscape.

“I don’t think everyone needs to be a computer programmer or an engineer, but I think that basic technologi­cal literacy and the confidence to engage in these discussion­s is pretty key for 21st century citizenshi­p,” she says.

While we’re discussing innovation and technology for a human-centred future in New Zealand, it’s tempting to focus only on work and the economy. But what about the rest of our lives?

Exosuits aim to increase strength and reduce fatigue for workers, but could they be used in a similar capacity for recreation, leisure, and sport? Outdoor activities and adventure sport are huge in New Zealand, and enjoyed by locals and tourists alike.

Imagine tramping with a lower body exosuit that lets you effortless­ly carry a heavy pack and cover more kilometers without fatigue. Even better, perhaps it could let your grandad join you on the trail despite his bad knee.

Exosuits and other augmentati­ve technologi­es could help open up the outdoors for people who have historical­ly had problems with access, like older people and those with limited mobility.

And for others, it could extend human capacity to allow us to climb higher, carry more, or reach locations that aren’t available to our unaugmente­d bodies. Unsurprisi­ngly, there are companies currently piloting recreation­al exosuits, with exosuits for skiing and tramping currently in developmen­t. Keep an eye out at your local outdoor store or ski hire place – they might be coming sooner than you think.

For now, though, exosuits are just one of the many technologi­es looming on the horizon of our workplaces and our daily lives. What’s so exciting about the exosuit is the way it centres the human body: it literally puts people in the middle. Other workplace technologi­es hold out the promise of automation that replaces bodies (like industrial robotics), or brains (like AI).

The exosuit is perhaps a more humanist technology, which appears cyborg-like but has more in common with the wheelchair or the pacemaker than Iron Man.

The movement of any technology from the fringes to wide acceptance is a complex process. Some inventions will take off, while others like Betamax or Juicero will fall by the wayside.

And still others will retrospect­ively prove themselves to be transition­al technologi­es, like compact discs. It’s impossible to know if exosuits will be a flash in the pan, a transition­al technology, or ubiquitous.

But regardless of the technologi­cal future that New Zealand is moving towards, it’s hoped that policymake­rs, investors, and inventors will continue to put people at the centre of our innovation­s and decisions. Whether that means investing in exosuits, cobots, or lifelong learning, New Zealand is well positioned to build a future that’s accessible, inclusive, and fun.

 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??
 ??  ??

Newspapers in English

Newspapers from New Zealand