Marlborough Express

Major fault failed twice

- Stuff

New research shows the Ke¯kerengu¯ Fault - the fault that moved most during the Kaiko¯ura earthquake - failed twice during the quake.

By using all available seismic and GPS data, and developing high resolution models of the quake, researcher­s have been able to show how the quake spread through the complex network of faults. That includes a detailed timeline.

Their research, published just three weeks before the first anniversar­y of the magnitude 7.8 Kaiko¯ura earthquake, shows a separation of about 11 seconds between the start of the original failure on the Ke¯kerengu¯ Fault and the start of the second failure.

‘‘This is the first time rupture reactivati­on on a crustal fault has been identified,’’ GNS Science seismologi­st Dr Caroline Holden said.

Holden is the correspond­ing author of a research letter outlining the findings published in Geophysica­l Research Letters.

Scientists have been astounded by the complexity of the earthquake, with earlier research showing that after starting in North Canterbury it moved northward for more than 170km, rupturing at least 12 major crustal faults and nine lesser faults.

It moved parts of the South Island more than five metres closer to the North Island, and uplifted parts of the South Island by up to eight metres.

The Ke¯kerengu¯ Fault had the largest movement during the quake, with pieces of the Earth’s crust displaced relative to each other by up to 25m at a depth of about 15km. At the surface the biggest horizontal movement measured was 12m.

According to the latest research it took 60 seconds for the rupture, moving from south to north, to get to the Ke¯kerengu¯ Fault.

The propagatio­n of the rupture was slow compared to other strikeslip earthquake­s, Holden said. That was despite large, concentrat­ed slip on some faults. A strikeslip earthquake is one where the blocks on either side of a more-orless vertical fault move mostly horizontal­ly.

Evidence for two failures on the Ke¯kerengu¯ Fault was strong. It included the two independen­t modelling approaches used, which provided robust constraint­s, Holden said.

Also, researcher­s used all available datasets from seismic and GPS stations very close to the faults ruptured during the quake, including a seismic station 2.7km from the Kekerengu Fault.

The work found little or no slip on the Hope Fault, which is the source of the highest seismic hazard in the region.

Newspapers in English

Newspapers from New Zealand