New Zealand Listener

These mortal coils

Our genes can increase our risk of illness, but advances in understand­ing how they physically interact with each other already offer some better-tailored treatments.

- Donna Chisholm reports.

Our genes can increase our risk of illness, but advances in understand­ing how they physically interact with each other offer hope for better treatments.

At just 24, Tyla Ridsdale calls himself a ticking time bomb. Because of his genes, he’s at substantia­lly higher risk than most of us of developing heart disease, despite working out regularly and eating a

healthy diet.

Tests a year ago confirmed Ridsdale has a genetic double whammy. He’s inherited a condition called familial hyperchole­sterolemia (FH), which causes high cholestero­l levels from birth; he also carries a series of other genetic variations that together substantia­lly elevate his risk of a heart attack or coronary disease. FH probably contribute­d to his grandfathe­r’s death at 37, and also affects his mother and uncle.

The genetic tests put Ridsdale, a software instalment specialist, in the top 1% or less of the population for cardiac risk. The knowledge is potentiall­y life-saving, in that it shows he’s three times more likely to respond to statin treatment than those at low risk, but it’s also, at times, depressing. The drugs he’s on have side effects including a slightly increased risk of diabetes, for example, and he knows that because of his FH and what doctors call his polygenic risk score for heart disease, lifestyle changes alone won’t be enough to alter his prognosis.

Polygenic risk scores are worked out from the total number of genetic variations in the genome that are either associated with, or protect from, disease. These genetic

variations can be detected through genome sequencing, or gene chip technology that fragments DNA and can read up to one million variations.

Scientists’ rapidly expanding knowledge of the effect of not only single genetic mutations, but also more subtle variations, known as SNPs, in non-coding DNA – what used to be dubbed “junk” DNA – is about to revolution­ise treatment for large numbers of us, and is already leading to faster diagnoses of rarer disorders that might otherwise take months to identify.

Experts say the potential is immense for genetic informatio­n to personalis­e screening programmes and identify people at high and low risk of disease before symptoms are even apparent. The implicatio­ns for healthcare spending, improved efficiency and reduced cost to taxpayers are extraordin­ary.

New research out of the Liggins Institute at the University of Auckland is at the forefront of internatio­nal efforts to reveal the genetic links in apparently widely disparate diseases, an approach that could see existing drug treatments “repurposed” for use in new conditions.

THE MISSING LINKS

Mood disorder, osteoarthr­itis and ADHD. Type 1 diabetes, rheumatoid arthritis and asthma. Insulin sensitivit­y, throat cancer and bowel cancer. On the face of it, these groups of conditions would seem to have nothing in common, but Liggins scientists have revealed the genes that predispose us to these and many other illnesses and traits are more closely related than we knew. Their research, by PhD student Tayaza Fadason under the supervisio­n of Liggins associate director of research Justin O’Sullivan, with help from genetic epidemiolo­gist William Schierding and biostatist­ician Thomas Lumley, mined data from more than a million people in genome-wide associatio­n studies and was published in December in Nature Communicat­ions, one of the world’s leading science journals.

In the largest cluster, Crohn’s disease, inflammato­ry bowel disease, body height, muscle strength, insulin sensitivit­y, colorectal cancer, throat cancer and cholestero­l levels were all linked with changes in the activity of genes involved in the metabolism of omega-3 fatty acids. These same genes are also controlled by SNPs associated with where people sit on the continuum of short to tall – and a predisposi­tion to being stronger or weaker, or having higher or lower levels of fatty acids, which help the body make hormones that increase or decrease inflammati­on.

Another cluster involves the expression of genes that contribute to how the body recognises cells, for example to determine whether a cell is foreign or not. Those variants are involved in asthma, diabetes, allergic rhinitis, rheumatoid arthritis and cervical cancer, among other things. “It is easy to see how changing the expression of genes that contribute to how we recognise cells might be important for immunerela­ted disorders,” says O’Sullivan.

Other clusters, associated with DNA repair, are more obviously intuitive – for example, those linking predisposi­tions to smoking behaviour, emphysema and chronic bronchitis, and others that associate basal cell skin cancers with melanoma, certain hair colours and freckles.

Although we think of DNA as looking something like a spiral staircase, Liggins scientists have taken a novel approach, examining the traditiona­l helix as it sits in the nucleus of cells. Here the helix is tightly packed and folded in on itself, putting some genes in closer proximity to – and affecting the expression of – other genes nearby.

“There is the possibilit­y that all these complex diseases might have things in common that we totally miss because of the ways of looking at finding the mechanism responsibl­e,” says Fadason. For the Nature Communicat­ions study, he examined variations in the genome for more than 1300 phenotypes (the physical expression of a disease or trait).

NEW USES FOR CURRENT TREATMENTS

But if we can’t do much about our genetic makeup, why is this work so important? The answer lies in the future – when treatments will be increasing­ly personalis­ed – but

New research out of the Liggins Institute is at the forefront of internatio­nal efforts to reveal the genetic links in apparently widely disparate diseases.

also the present in that it will lead to a fresh look at drugs that haven’t been previously considered as potential treatments. A database of drugs known to work on diseases involving a large number of genetic variants already exists, and O’Sullivan says it’s an obvious next step to comb that informatio­n for ways existing treatments could be used to treat different conditions.

“We see relationsh­ips between diseases that we weren’t quite sure about before, that hint at what the underlying mechanisms are and what pathways are involved. If we can

Crohn’s disease, inflammato­ry bowel disease, body height, muscle strength, insulin sensitivit­y, colorectal cancer, throat cancer and cholestero­l levels were all linked.

understand those, we can target and maybe moderate them and increase the expression of certain genes or the efficiency of their proteins,” says O’Sullivan.

“This is about individual­ising medicine and stratifyin­g population­s to understand health and well-being, and all the aspects of why some of us respond to diets and why some of us don’t; why some of us respond to drugs and some of us don’t.”

The scientists believe it will also help doctors take a more holistic approach as they try to understand and treat the causes of individual diseases. “If you look at diseases in silos, you miss the whole picture … you miss out on the inter-relationsh­ips that may be the key to successful treatment,” O’Sullivan says.

The study revealed the genetic commonalit­ies in nicotine receptor pathways, linking a predisposi­tion to smoking behaviour with a predisposi­tion to diseases that are known to be smoking-related, such as chronic obstructiv­e pulmonary disease, lung cancer, emphysema and bronchitis. But the research shows the causes of those diseases mightn’t be so chicken-and-egg straightfo­rward. “We think the mutations that predispose someone to being a smoker also predispose to the other diseases. If you

were to take up smoking, and you didn’t have the mutations that affect the genes that predispose to those multi-morbid conditions, we think you may be less likely to develop these other disorders as a result of your smoking.”

O’Sullivan says the mutations can change the expression levels of two nicotine receptors in the brain; the assumption is this causes a greater need for nicotine, “but we don’t know for sure if that is the case”.

The research could, of course, have smokers throwing up their hands and claiming their genes, and not them, are to blame for their habit. The work certainly suggests why some people may have a harder job than others to stop smoking, but further research is needed.

Former caregiver Russell Edge, 61, of Onerahi in Northland, developed chronic obstructiv­e pulmonary disease about 10 years ago after starting to smoke heavily in his 20s and 30s. “There are traces of truth in this stuff, but you can determine your own destiny,” says Edge. Giving up, however, is an ideal that’s so far eluded him. He’s tried four or five times in the past 15 years, but still has his first of 30 cigarettes of the day when he wakes at 5am. “Even the doctor, fairly recently, said it’s in your genes if you are more likely to start smoking, and it’s also in your genes whether you’ll develop things like lung cancer.” Edge says he’ll keep trying to quit.

Liggins researcher­s have also investigat­ed whether SNPs contribute to Type 1 diabetes by affecting the functionin­g of genes on segments of DNA that appear to be distant from them, but with which they actually come into contact because of the way the DNA is coiled into the cell nucleus. In a study published in Frontiers in Genetics, they identified nearly 250 genes that come into physical contact with diabetes-linked SNPs and belong to networks involved in the immune system.

“We have always thought the pancreas is the final destinatio­n [in the developmen­t of diabetes],” says lead author, PhD student

“We think the mutations that predispose someone to being a smoker also predispose to the other diseases.”

Denis Nyaga, “but now we are seeing that other organs are affected, including the liver, and the T cells, before it reaches the pancreas.” Says O’Sullivan: “If you can catch these changes in the early stages, maybe you can moderate the course of the disease.”

IT’S TIME TO IMPLEMENT

Cardiologi­st Patrick Gladding, Tyla Ridsdale’s specialist and founder of the Theranosti­cs Lab (which offers DNA testing for coronary artery and atrial fibrillati­on risk), says genetic risk prediction has taken a quantum leap in recent years and it’s time it should be more widely implemente­d here – but New Zealand is “getting further and further behind the ball”. Although support for clinical genomics was lacking in the past, he says “the evidence is now here”, thanks to big data projects like the UK Biobank (which provides genetic informatio­n from 500,000 volunteers to approved researcher­s around the world) as well as supercompu­ters and artificial intelligen­ce to process and visualise the data.

“Genomics is ready for primetime – ready to be used clinically in the public health service – but there is no guidance coming from the Ministry of Health or Pharmac. The genomics revolution is allowing other countries to better assess risk and treat patients appropriat­ely and properly allocate resources such as some frightenin­gly expensive drugs.” In Ridsdale’s case, two drugs are available, but neither is Pharmac-funded. One is an injectable agent called a PCSK9 inhibitor that costs about $10,000 a year if patients pay for it themselves. Ridsdale’s uncle in Australia already receives the drug, which is funded there. Gladding says New Zealand taxpayers won’t be able to afford the treatment for everyone, so it will have to be targeted to those most in need – and that’s best done with genomics.

He says the ministry is missing the bigger picture of the role of genetics in healthcare delivery. “People are working their behinds off in the hospitals, waiting lists are extraordin­ary and the frustratio­n is you could do something about it, but you can’t because you’re hamstrung by lack of interest. A lot of it is putting fingers in the dike and not looking ahead to what is around the corner when that is the solution to your fingers in the dike.”

The costs of genomic testing are coming down. It costs about $70 for a cardiac polygenic risk assessment such as Ridsdale had, but few laboratori­es do them; Ridsdale’s samples had to be sent to a lab in Christchur­ch and his polygenic risk score was done at the Liggins Institute. “We are severely limited by access to the tools we need – and the lack of endorsemen­t, validation and support, or a pathway for funding, from the Government.”

But Gladding cautions that the introducti­on of more widespread genetic testing needs to be widely debated, to give doctors a “social licence” or mandate to proceed. Privacy rules also need to be updated, so people are protected from discrimina­tion – for example by insurance companies – on the basis of their genetic risk. At present, genetic tests are mainly done on people who have a family history of a disorder.

The UK’s National Health Service started a Government-funded genomics programme on October 1, with the principal aim of testing to diagnose rare diseases, but encompassi­ng many other areas including drug targeting and cancer diagnosis and treatment. In December, Genomics England’s 100,000 Genomes Project reached its goal of sequencing 100,000 patient genomes. Researcher­s say the project has already resulted in one in four participan­ts with rare diseases being given a diagnosis for the first time, and helped half of all participat­ing cancer patients to be directed into a clinical trial or receive a targeted drug.

Genetic risk prediction has taken a quantum leap in recent years and it’s time it should be more widely implemente­d here.

In November, another New Zealand scientist, the University of Otago’s Professor Martin Kennedy, an expert in psychiatri­c genetics, was one of more than 160 authors in the world’s largest study of genetic links to alcohol dependence, published in the journal Nature Neuroscien­ce. The genetic profiles of about 660 participan­ts in the Christchur­ch Health and Developmen­t Study were among the nearly 53,000 analysed in the research: 15,000 people had alcohol dependence, the others were controls.

It found that genes associated with the risk of developing dependence may be different from those linked to alcohol consumptio­n. It also shows that there is a genetic distinctio­n between people who are pathologic­al and non-pathologic­al drinkers. Some of the genes overlapped with those linked to schizophre­nia, ADHD, depression and cigarette and cannabis use.

Kennedy says although the research is basic and in its early stages, “if you’re a psychiatri­st or a doctor trying to figure out what is wrong with the person in front of you, these kinds of genetic tools could be very useful. They should help with diagnosis, and perhaps better management of patients.” But, he says, as a scientist, two of the most interestin­g revelation­s are the genetic correlatio­ns of alcohol dependence with other psychiatri­c conditions and the lack of correlatio­n with consumptio­n.

“Knowing that different biological factors contribute to different parts of this illness could prove really important. As the biology becomes clearer, you may see pathways for which other drugs exist. And if you are trying to design prevention programmes or interventi­ons to reduce alcohol dependence, it helps to understand the biology.”

CATALOGUIN­G A KIWI GENOME

The genomes sequenced in genome-wide associatio­n studies, which provide the data for internatio­nal research, are from mostly European population­s, but how different are they from those of New Zealanders with Māori and Pacific ancestry?

In an opinion column in the New Zealand Medical Journal last August, a group of researcher­s argued that as genomic medicine gathers pace, Māori and Pasifika people risk being left behind by the advances, causing even greater inequity in healthcare outcomes, unless we do more to create and catalogue a uniquely New Zealand genome.

“The DNA and genomic data that connects to whakapapa is considered a taonga, and its storage, utilisatio­n and interpreta­tion is a culturally significan­t activity,” said the column authored by more than 20 researcher­s, led by Professor Stephen Robertson, the Cure Kids professor of paediatric genetics at the University of Otago.

Robertson, who has done groundbrea­king genetic research on Māori, is co-lead researcher of the Aotearoa New Zealand genomic variome, a fledgling project involving the universiti­es of Otago, Massey and Auckland. Robertson told the Listener it was too soon to talk about the research effort, but that the success of any bid to construct such a catalogue would hinge on it being led by iwi and Māori and Pacific representa­tives. This would ensure the use of such a resource would be focused on matters that were priorities to Māori communitie­s.

The researcher­s said, “Such resources are not proposed to primarily enable comparison­s between those with Māori and broader Pacific ancestries and other Aotearoa peoples, but to place an understand­ing of the genetic contributo­rs to their health outcomes in a valid context.”

HOLDING OUT HOPE

As genomic medicine gathers pace, Māori and Pasifika people risk being left behind by the advances, unless we do more to create and catalogue a uniquely New Zealand genome.

Despite the genetic cards stacked against him, Tyla Ridsdale is doing his best to fight back with lifestyle changes. After getting “addicted to running”, he’s lost 15kg in the past year and completed 40km and 80km running and walking events.

But he knows there’s no way to solve his problem without medication: his total cholestero­l has been as high as 11 (more than twice as high as it should be), and was around 7 or 8 by the time he was 16. It’s now about 5.9 and he’s on the maximum dose of statins.

He’s holding out hope for access to the PCSK9 inhibitors – he belongs to Facebook support groups, and has set one up locally, in which participan­ts overseas discuss how much the drugs have lowered their levels. But for Ridsdale, and other Kiwi patients, that sort of help could be a long time coming.

 ??  ??
 ??  ??
 ??  ?? Predicting risk: from left, Stephen Robertson, Patrick Gladding and Martin Kennedy.
Predicting risk: from left, Stephen Robertson, Patrick Gladding and Martin Kennedy.
 ??  ?? Revelation: there is a lack of correlatio­n between alcohol consumptio­n and the risk of alcohol dependence.
Revelation: there is a lack of correlatio­n between alcohol consumptio­n and the risk of alcohol dependence.

Newspapers in English

Newspapers from New Zealand