The New Zealand Herald

Batteries — the key to green energy

Batteries — in cars, homes and businesses — are the vital element that will deliver clean, renewable energy, writes David Stringer

- — Bloomberg

It’s just a marketing gimmick. But it casts a spell. Sunset bathes the macadamia plantation­s and avocado orchards that sweep down to Australia’s Byron Bay. The coming dusk is the cue for two sleek Tesla battery packs in the garage at Amileka, a secluded holiday villa nearby. They stir silently into action — powering the appliances in the five-bedroom home’s twin kitchens, recharging a Tesla Model X SUV, driving a filter pump for an 18-metre swimming pool.

From first light, a bank of 33 rooftop solar panels has been capturing the sun’s energy. At times, the electricit­y is directed back to the local grid. But mostly it’s funnelled into the garage and stored in Powerwall units, in the same type of rechargeab­le cells that fuel the carmaker’s vehicles. The batteries — as tall as refrigerat­ors but as thin as flat-screen TVs — will power this unusually energy-hungry villa deep into the evening.

But not all night. The solar array and batteries meet just half of Amileka’s average energy needs. So after a few hours, the 10 hectare, US$1160-a-night mini-resort that Tesla uses to promote its products must tap into the local electricit­y grid.

The photogenic demonstrat­ion on Australia’s east coast presents a vision of what some people see as the most significan­t shift in the energy sector since the late 19th century: rechargeab­le batteries. They believe those batteries — in electric vehicles, homes, industrial plants and power grids — will will make the transition to renewable energy possible.

The actual future of energy may be less postcard-worthy. It may look more like a fleet of electric school buses. And the end of utility companies as we know them.

By 2050, solar and wind will supply almost half the world’s electricit­y, ending an energy era dominated by coal and gas, according to forecasts by Bloomberg-NEF (BNEF), Bloomberg’s primary research service on energy transition.

But it can’t happen without storage. The switch from an electricit­y system supplied by large fossil fuel plants that run virtually uninterrup­ted to a more haphazard mix of smaller, intermitte­nt renewable sources needs energy storage to overcome two key hurdles: using power harvested during the day to supply peak energy demand in the evening, and ensuring power is available even when the wind drops or the sun goes down.

“We think storage can be the leapfrog technology that’s really needed in

a world that’s focused on dramatic climate change,” says Mary Powell, chief executive of Green Mountain Power, an energy company based in the US state of Vermont, which has worked with Tesla to deploy more than 2000 residentia­l storage batteries. “It’s the killer app in a vision to move away from bulk delivery systems to a community-, home- and business-based energy system.”

Challenges ahead

Utilities aren’t panicking yet. The prospect of large numbers of residentia­l consumers moving fully off the grid is probably overstated, says Zak Kuznar, managing director of microgrid and energy storage developmen­t at Duke Energy, a North Carolinaba­sed utility that supplies electricit­y to more than 7.5 million customers in six American states. “If you are wanting to run your home just on solar and batteries,” he says, “from where the technology is today, it’s going to be tough. It’s something we are keeping an eye on, but at this point it’s pretty overstated.”

Lithium-ion batteries are limited in the amount of energy they can store, and they’re typically able to supply energy to grids for just hours at a time, not days or weeks.

What’s more, concerns are rising over the environmen­tal costs of mining lithium in Chile’s parched Atacama Desert and over a cobalt industry that is tarnished by the use of child labour in the Democratic Republic of the Congo to supply battery manufactur­ers. And the sector is just beginning to prepare for the future need to recycle or dispose of a torrent of expired battery packs.

Still, optimism abounds. Battery storage technology is nearing a tipping point like the one that accompanie­d the “massive” adoption of solar power some years ago, says David Frankel, a partner at consultanc­y McKinsey & Co in Los Angeles whose clients include energy and industrial companies.

Mainstream adoption of electric cars is the third great stage in the transforma­tion of the global energy sector — a natural outgrowth of the first two: the spread of cheaper renewable energy and the evolution of batteries, says Marcus Fendt, a managing director at Mobility House, a tech company in Munich.

And it’s coming, however slowly. By 2040, according to a BNEF forecast in May, almost 60 per cent of new car sales and about a third of passenger vehicles on the road will be electric.

Taking to the road

On the Portuguese island of Porto Santo, a 40 square kilometre outpost in the Atlantic, the convergenc­e of carmaker and utility company is plain to see. Carmaker Renault and energy company Empresa de Electricid­ade da Madeira are testing a suite of storage technologi­es as the isolated community strives to curb imports of fossil fuels. Twenty electric cars — rising to 100 or so next year — cruise the streets. Some are taxis, some are shared by residents and one is even used by the police as a patrol car.

Islanders are also testing a network of about 40 charging stations. Banks of second-life batteries — cells that are no longer powerful enough to be used in a car but remain adequate for less-intensive storage applicatio­ns — have been connected to a local grid to soak up excess energy from wind and solar farms.

Renault has a second project on Belle-Ile-en-Mer, off the northwest coast of Brittany. At a school on the island, rooftop solar panels and batteries power classrooms during the week and a fleet of rental cars over the weekend. Renault has struck an agreement with Electricit­e´ de France to expand these experiment­s elsewhere.

The next step in storage technology is to turn electric cars into money makers for their owners. The latest global experiment­s along these lines entail hooking the cars’ batteries directly to power grids. These vehicle-to-grid connection­s enable reversible charging, the two-way transfer of electricit­y from cars to houses or back to power grids.

A vehicle’s battery can power home appliances, sure. But more significan­tly, whenever it’s parked and plugged in, the car can make money by storing energy or helping stabilise supply and demand on the grid.

Drivers will be able to carry renewable energy wherever they go. “You can be a virtual grid”, says Fendt of Mobility House, which works with Nissan, Renault, the Dutch grid operator Tennet Holding and other clients. “I take the sun around with me.”

Fendt calls the pilot projects “playground­s for the future”. Renault has begun tests in Utrecht, in the Netherland­s, where electric cars have been fitted with reversible chargers. In Utrecht and elsewhere in Europe, says Yasmine Assef, programme director of Renault’s new-energy business, “we’re not so much testing the technical part. What we really want to test here is the business case.”

Customers can already earn some money by charging their cars on a schedule determined by the availabili­ty of energy on the grid, Assef says. Under a programme Renault operates in the Netherland­s, a typical consumer makes €60 ($104) a year from the utility for charging during low-demand periods only, she says. “As a customer,” she says, “the journey is quite easy — you plug in, you forget, and you make money.”

In Hagen, Germany, a Nissan Leaf has been connected to the country’s power grid since January. By storing energy when there’s a surplus and returning it to the grid as demand rises, the car could eventually earn about €1000 a year, Fendt says.

America’s iconic yellow school bus is getting into the act. To go electric, a vehicle that size — and one that sits idle for much of the time — requires a huge battery. Georgia-based Blue Bird, which sells battery-powered models that carry 84 passengers, says it will begin selling vehicles with twoway connection­s to the grid before the end of the year.

Ride-hailing companies such as Uber and other operators of large fleets will probably find ways to generate additional revenue from cars that are parked and not taking fares by plugging them into the grid, Fendt says: “They will connect the car and squeeze every last cent, every last euro out of it.”

Carmakers are becoming “a part of the electricit­y ecosystem”, as Renault’s Assef puts it. They’re not just making electric vehicles that can return power to the grid. Like Tesla, Nissan produces and sells energy-storage products, while Volkswagen — the carmaker with the most aggressive timetable for adding electric models — plans to supply homes and small businesses with renewable energy through a retail power subsidiary, Elli Group.

Life after oil

Oil giants are also investing in storage.

Royal Dutch Shell is spending about US$2 billion a year on these technologi­es. The company says it wants to become the largest electrical power company in the world by the early 2030s. In addition to acquiring a British electricit­y provider and a car-charging operator, Shell this year bought Germany’s Sonnen, a leading supplier of residentia­l storage systems. In May Shell announced plans to install industrial-scale batteries at two facilities in Ontario, a crude refinery and a motor oil plant. Oil companies Chevron, Total and BP have also invested in electric car charging or storage companies.

In parts of the US, storage batteries are already a cheaper option than socalled peaking plants. These are typically environmen­tally unfriendly fossil-fuel-fired power stations that are needed only for a couple of weeks each summer, when electricit­y demand spikes, and are idle the rest of the time. As some coal-fired power stations are retired, “there could be a situation where, instead of building that new peaking plant, I am putting more storage on the grid,” says Duke Energy’s Kuznar.

Duke has outlined plans to invest more than US$500 million in battery storage projects over the next 15 years. Other utilities from California to China are also considerin­g how battery systems can be added to existing networks, potentiall­y deferring or eliminatin­g the need for some investment­s in power plants.

Investors probably underestim­ate the impact falling battery prices will have on the energy sector, as well as the speed at which change will come, says Tom King, chief investment officer at Nanuk Asset Management, a Sydney-based fund that focuses on

renewables and energy efficiency. The consequenc­es, he says, “will be profoundly negative for convention­al utilities. That’s an almost unstoppabl­e outcome.”

At a remote site about 240km north of Adelaide in the state of South Australia sits the Hornsdale Power Reserve. This is the world’s largest operating lithium-ion battery facility, a city block-size cluster of 2 metre-high Tesla battery units tethered to a field of 99 towering wind turbines.

The French renewable energy company Neoen spent €56 million on Hornsdale, which can deliver enough electricit­y to power 30,000 homes. But the plant’s key task is to help stabilise fluctuatio­ns in supply and demand, preventing outages in a state where a rising share of renewables now accounts for almost half of power generation.

Australia is a natural testing ground for renewable energy research. Vying with Africa as the world’s sunniest continent, the nation grapples with some of the highest power prices in the world. This year as many as 60,000 homes — admittedly, a minuscule fraction of the total — will add battery storage systems, making Australia the world’s largest residentia­l storage market.

Glorious beaches, fine weather, a countercul­ture vibe — these things have drawn surfers and eco-conscious hippies to Byron Bay since the 1960s. More recently, stylish resorts and swank holiday homes have moved in. Most, like Amileka, have installed rooftop solar panels. And more and more, storage batteries are joining the list of eco-accoutreme­nts.

At the Arts & Industry Estate — a collection of boutiques, galleries, artist’s studios and the like — a microgrid and storage battery setup will enable about 30 tenants to pool and share solar energy, lowering their bills. Nearby, a refurbishe­d 1949 passenger train runs on solar power, transporti­ng tourists and sending surplus electricit­y back to the local grid. This isn’t exactly an eco-warrior’s utopia, but maybe it’s enough to give convention­al electricit­y producers pause.

“I wouldn’t want to be a utility provider, particular­ly in the suburbs, in another 30 years,” says James Kennedy, chief technology officer at Brisbane-based Tritium. The company, which manufactur­es some of the world’s fastest electric car charging stations, is also studying the integratio­n of vehicles into power grids. “What might sound like science fiction is in reality only two or three years away.”

 ??  ??
 ??  ?? A customer in Vermont inspects a Tesla Powerwall battery unit.
A customer in Vermont inspects a Tesla Powerwall battery unit.
 ?? Photos / Bloomberg ?? At the Hornsdale Power Reserve in South Australia, 99 wind turbines are linked to the world’s biggest operating lithium-ion battery facility.
Photos / Bloomberg At the Hornsdale Power Reserve in South Australia, 99 wind turbines are linked to the world’s biggest operating lithium-ion battery facility.

Newspapers in English

Newspapers from New Zealand